\[f(x) = x^{3} + ax^{2} + bx + c.\]
\[1)\ A\ и\ \text{B\ }лежат\ на\ расстоянии\ \]
\[\text{l\ }от\ x = - 2:\]
\[A\left( - 2 - l;\ f( - 2 - l) \right);\]
\[B\left( l - 2;\ f(l - 2) \right).\]
\[2)\ f^{'}(x) =\]
\[= \left( x^{3} \right)^{'} + a\left( x^{2} \right)^{'} + (bx + c)^{'} =\]
\[= 3x^{2} + 2ax + b.\]
\[3)\ Касательные\ параллельны:\]
\[3( - 2 - l)^{2} + 2a( - 2 - l) + b =\]
\[= 3(l - 2)^{2} + 2a(l - 2) + b\]
\[3(l + 2)^{2} - 4a - 2al =\]
\[= 3(l - 2)^{2} + 2al - 4a\]
\[3\left( l^{2} + 4l + 4 \right) - 2al =\]
\[= 3\left( l^{2} - 4l + 4 \right) + 2al\]
\[3l^{2} + 12l + 12 - 2al =\]
\[= 3l^{2} - 12l + 12 + 2al\]
\[12l + 12l - 2al - 2al = 0\]
\[24l - 4al = 0\]
\[6l - al = 0\]
\[6 - a = 0\]
\[a = 6.\]
\[4)\ Уравнение\ касательной\ \]
\[в\ точке\ t:\]
\[f^{'}(t) = 3t^{2} + 12t + b;\]
\[f(t) = t^{3} + 6t^{2} + bt + c;\]
\[5)\ В\ точке\ с\ x = 0:\]
\[y = c - 2t^{3} - 6t^{2}.\]
\[6)\ Касательная\ проходит\ через\ \]
\[точку\ (0;\ 1):\]
\[1 = c - 2( - 2 - l)^{3} - 6( - 2 - l)^{2}\]
\[c + 2l^{3} + 6l^{2} - 9 = 0\]
\[c = - 2l^{3} - 6l^{2} + 9.\]
\[7)\ Касательная\ проходит\ \]
\[через\ точку\ (0;\ 5):\]
\[5 = c - 2(l - 2)^{3} - 6(l - 2)^{2}\]
\[c - 2l^{3} + 6l^{2} - 13 = 0\]
\[c = 2l^{3} - 6l^{2} + 13\]
\[8)\ - 2l^{3} - 6l^{2} + 9 = 2l^{3} - 6l^{2} + 13\]
\[- 4l^{3} = 4\]
\[l^{3} = - 1\]
\[l = - 1;\]
\[c = - 2 - 6 + 13 = 5.\]
\[9)\ Точка\ A:\]
\[- 2 - l = - 2 + 1 = - 1;\]
\[f( - 1) = - 1 + 6 - b + 5 = 10 - b.\]
\[10)\ Точка\ B:\]
\[l - 2 = - 1 - 2 = - 3;\]
\[f( - 3) = - 27 + 54 - 3b + 5 =\]
\[= 32 - 3b.\]
\[11)\ Ординаты\ точек\ равны:\]
\[10 - b = 32 - 3b\]
\[2b = 22\]
\[b = 11.\]
\[Ответ:\ \ a = 6;\ b = 11;\ c = 5.\]