\[y = 3\cos{5x};\text{\ \ \ }y = 5\cos{3x} + 2.\]
\[1)\ f^{'}(x) = 3 \bullet \left( - 5\sin{5x} \right) =\]
\[= - 15\sin{5x};\]
\[g^{'}(x) = 5 \bullet \left( - 3\sin{3x} \right) + 0 =\]
\[= - 15\sin{3x};\]
\[2)\ Касательные\ параллельны:\]
\[- 15\sin{5x} = - 15\sin{3x}\]
\[\sin{5x} = \sin{3x}\]
\[\sin{5x} - \sin{3x} = 0\]
\[2\sin\frac{5x - 3x}{2} \bullet \cos\frac{5x + 3x}{2} = 0\]
\[\sin x \bullet \cos{4x} = 0\]
\[\sin x = 0\]
\[x = \pi n.\]
\[\cos{4x} = 0\]
\[4x = \frac{\pi}{2} + \pi n\]
\[x = \frac{\pi}{8} + \frac{\text{πn}}{4}.\]
\[Ответ:\ \ \pi n;\ \frac{\pi}{8} + \frac{\text{πn}}{4}.\]