\[- 1 \leq x \leq 1;\]
\[\arcsin x + \arccos x = C.\]
\[\sin\left( \arccos x \right) =\]
\[= \sqrt{1 - \cos^{2}\left( \arccos x \right)} =\]
\[= \sqrt{1 - x^{2}};\]
\[\cos\left( \arcsin x \right) =\]
\[= \sqrt{1 - \sin^{2}\left( \arcsin x \right)} =\]
\[= \sqrt{1 - x^{2}};\]
\[\sin\left( \arcsin x + \arccos x \right) =\]
\[= x \bullet x + \sqrt{1 - x^{2}} \bullet \sqrt{1 - x^{2}} =\]
\[= x^{2} + \left( 1 - x^{2} \right) = 1;\]
\[\arcsin x + \arccos x = \frac{\pi}{2} + 2\pi n\]
\[- \frac{\pi}{2} \leq \arcsin x \leq \frac{\pi}{2}\]
\[0 \leq \arccos x \leq \pi;\]
\[C = \arcsin x + \arccos x = \frac{\pi}{2}.\]
\[Ответ:\ \ C = \frac{\pi}{2}.\]
\[\ \]