\[r\ - радиус\ основания;\]
\[h - высота\ цилиндра.\]
\[1)\ Диагональ:\]
\[(2r)^{2} + h^{2} = d^{2}\]
\[4r^{2} + h^{2} = (2R)^{2}\]
\[4r^{2} = 4R^{2} - h^{2}\]
\[r^{2} = R^{2} - \frac{h^{2}}{4}.\]
\[2)\ V(h) = \pi r^{2} \bullet h =\]
\[= \pi h \bullet \left( R^{2} - \frac{h^{2}}{4} \right) = \pi hR^{2} - \frac{\pi h^{3}}{4};\]
\[V^{'}(h) = \pi R^{2}(h)^{'} - \frac{\pi}{4}\left( h^{3} \right)^{'} =\]
\[= \pi R^{2} - \frac{3\pi}{4}h^{2}.\]
\[3)\ Промежуток\ возрастания:\]
\[\pi R^{2} - \frac{3\pi}{4}h^{2} \geq 0\]
\[4\pi R^{2} - 3\pi h^{2} \geq 0\]
\[3\pi h^{2} \leq 4\pi R^{2}\]
\[h^{2} \leq \frac{4R^{2}}{3}\]
\[- \frac{2R}{\sqrt{3}} \leq h \leq \frac{2R}{\sqrt{3}}.\]
\[4)\ Точка\ максимума:\]
\[r = \sqrt{R^{2} - \frac{h^{2}}{4}} = \sqrt{R^{2} - \frac{1}{4} \bullet \frac{4R^{2}}{3}} =\]
\[= \sqrt{\frac{2R^{2}}{3}} = R\sqrt{\frac{2}{3}}.\]
\[Ответ:\ \ h = \frac{2R}{\sqrt{3}};\ r = R\sqrt{\frac{2}{3}}.\]