\[r - радиус\ основания;\]
\[h - высота\ цилиндра.\]
\[1)\ Периметр\ осевого\ сечения:\]
\[2(2r + h) = p\]
\[2r + h = \frac{p}{2}\]
\[h = \frac{p}{2} - 2r.\]
\[2)\ V(r) = \pi r^{2}h = \pi r^{2}\left( \frac{p}{2} - 2r \right) =\]
\[= \frac{1}{2}\text{pπ}r^{2} - 2\pi r^{3};\]
\[V^{'}(r) = \frac{1}{2}p\pi \bullet 2r - 2\pi \bullet 3r^{2} =\]
\[= p\pi r - 6\pi r^{2}.\]
\[3)\ Промежуток\ возрастания:\]
\[p\pi r - 6\pi r^{2} \geq 0\]
\[pr - 6r^{2} \geq 0\]
\[r(6r - p) \leq 0\]
\[0 \leq r \leq \frac{p}{6}.\]
\[4)\ Точка\ максимума:\]
\[V\left( \frac{p}{6} \right) = \pi\left( \frac{p}{6} \right)^{2} \bullet \left( \frac{p}{2} - \frac{p}{3} \right) =\]
\[= \frac{\pi p^{2}}{36}\left( \frac{3p}{6} - \frac{2p}{6} \right) =\]
\[= \frac{\pi p^{2}}{36} \bullet \frac{p}{6} = \frac{\pi p^{3}}{216}.\]
\[Ответ:\ \ \frac{\pi p^{3}}{216}.\]