\[r - радиус\ основания;\]
\[h - высота\ цилиндра.\]
\[1)\ Объем\ банки:\]
\[\pi r^{2} \bullet h = V\]
\[h = \frac{V}{\pi r^{2}}.\]
\[2)\ Площадь\ поверхности:\]
\[S(r) = 2\pi r^{2} + 2\pi rh =\]
\[= 2\pi r^{2} + 2\pi r \bullet \frac{V}{\pi r^{2}} =\]
\[= 2\pi r^{2} + \frac{2V}{r};\]
\[S^{'}(r) = 2\pi \bullet 2r + 2V \bullet \left( - \frac{1}{r^{2}} \right) =\]
\[= \frac{4\pi r^{3} - 2V}{r^{2}}.\]
\[3)\ Промежуток\ возрастания:\]
\[4\pi r^{3} - 2V \geq 0\]
\[4\pi r^{3} \geq 2V\]
\[r^{3} \geq \frac{V}{2\pi}\]
\[r \geq \sqrt[3]{\frac{V}{2\pi}}.\]
\[4)\ Точка\ минимума:\]
\[\frac{D}{H} = \frac{2r}{h} = 2r \bullet \frac{\pi r^{2}}{V} = \frac{2\pi}{V} \bullet r^{3} =\]
\[= \frac{2\pi}{V} \bullet \frac{V}{2\pi} = 1.\]
\[Ответ:\ \ D = H.\]