Решебник по алгебре и начала математического анализа 11 класс Колягин Задание 1090

Авторы:
Год:2020-2021-2022-2023
Тип:учебник

Задание 1090

\[b - длина\ боковых\ сторон\ \]

\[основания\ пирамиды;\ \]

\[c - длина\ основания;\]

\[R - радиус\ основания\ \]

\[конуса:\]

\[1)\ c = 2R \bullet \sin a.\]

\[2)\ Величина\ равных\ углов:\]

\[\frac{1}{2} \bullet (\pi - a) = \frac{\pi}{2} - \frac{a}{2}.\]

\[3)\ По\ теореме\ синусов:\]

\[\frac{c}{\sin a} = \frac{b}{\sin\left( \frac{\pi}{2} - \frac{a}{2} \right)}\]

\[\frac{c}{\sin a} = \frac{b}{\cos\frac{a}{2}}\]

\[b = \frac{c \bullet \cos\frac{a}{2}}{\sin a} = 2R \bullet \cos\frac{a}{2}.\]

\[4)\ Площадь\ основания\ \]

\[пирамиды:\]

\[S(a) = \frac{1}{2}b \bullet b \bullet \sin a =\]

\[= \frac{4R^{2}\cos^{2}\frac{a}{2}}{2} \bullet \sin a =\]

\[= 2R^{2}\cos^{2}\frac{a}{2}\sin a =\]

\[= 2R^{2} \bullet \frac{1 + \cos a}{2} \bullet \sin a =\]

\[= R^{2} \bullet \left( 1 + \cos a \right) \bullet \sin a.\]

\[= R^{2} \bullet \left( \cos a + \cos^{2}a - \sin^{2}a \right).\]

\[6)\ Промежуток\ возрастания:\]

\[\cos^{2}a + \cos a - \sin^{2}a \geq 0\]

\[\cos^{2}a + \cos a - \left( 1 - \cos^{2}a \right) \geq 0\]

\[2\cos^{2}a + \cos a - 1 \geq 0\]

\[D = 1 + 8 = 9\]

\[\cos a_{1} = \frac{- 1 - 3}{2 \bullet 2} = - 1;\]

\[\cos a_{2} = \frac{- 1 + 3}{2 \bullet 2} = \frac{1}{2};\]

\[\left( \cos a + 1 \right)\left( \cos a - \frac{1}{2} \right) \geq 0\]

\[\cos a \leq - 1\ \ и\ \cos a \geq \frac{1}{2}\]

\[- \frac{\pi}{3} + 2\pi n \leq a \leq \frac{\pi}{3} + 2\pi n.\]

\[7)\ Точка\ максимума:\]

\[a = \frac{\pi}{3}.\]

\[Ответ:\ \ \frac{\pi}{3}.\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам