\[r\ - радиус\ основания;\]
\[\text{h\ } - высота\ конуса.\]
\[1)\ r = \sqrt{h \bullet (2R - h)}\]
\[r^{2} = 2Rh - h^{2}.\]
\[2)\ Объем\ конуса:\]
\[V(h) = \frac{1}{3}\text{πh}r^{2} =\]
\[= \frac{1}{3}\text{πh}\left( 2Rh - h^{2} \right) =\]
\[= \frac{2}{3}\text{πR}h^{2} - \frac{1}{3}\pi h^{3};\]
\[V^{'}(h) = \frac{2}{3}\text{πR}\left( h^{2} \right)^{'} - \frac{1}{3}\pi\left( h^{3} \right)^{'} =\]
\[= \frac{4}{3}\pi Rh - \pi h^{2}.\]
\[3)\ Промежуток\ возрастания:\]
\[\frac{4}{3}\pi Rh - \pi h^{2} \geq 0\]
\[4\pi Rh - 3\pi h^{2} \geq 0\]
\[\pi h \bullet (4R - 3h) \geq 0\]
\[h \bullet (3h - 4R) \leq 0\]
\[0 \leq h \leq \frac{4R}{3}.\]
\[4)\ Точка\ максимума:\]
\[h = \frac{4R}{3}.\]
\[Ответ:\ \ \frac{4R}{3}.\]