\[r\ - радиус\ основания;\]
\[\text{h\ } - высота\ цилиндра.\]
\[1)\ V = \pi r^{2} \bullet h\]
\[h = \frac{V}{\pi r^{2}}.\]
\[2)\ Площадь\ поверхности:\]
\[S(r) = 2\pi r^{2} + 2\pi rh =\]
\[= 2\pi r^{2} + \frac{2\pi r \bullet V}{\pi r^{2}} = 2\pi r^{2} + \frac{2V}{r};\]
\[S^{'}(r) = 2\pi \bullet 2r + 2V \bullet \left( - \frac{1}{r^{2}} \right) =\]
\[= \frac{4\pi r^{3} - 2V}{r^{2}}.\]
\[3)\ Промежуток\ возрастания:\]
\[4\pi r^{3} - 2V \geq 0\]
\[4\pi r^{3} \geq 2V\]
\[r^{3} \geq \frac{V}{2\pi}\]
\[r \geq \sqrt[3]{\frac{V}{2\pi}}.\]
\[5)\ Точка\ минимума:\]
\[S_{\min} = S\left( \sqrt[3]{\frac{V}{2\pi}} \right) =\]
\[= 2\pi \bullet \sqrt[3]{\frac{V^{2}}{4\pi^{2}}} + 2V \bullet \sqrt[3]{\frac{2\pi}{V}} =\]
\[= \sqrt[3]{2\pi V^{2}} + 2\sqrt[3]{2\pi V^{2}} = 3\sqrt[3]{2\pi V^{2}}.\]
\[Ответ:\ \ 3\sqrt[3]{2\pi V^{2}}.\]