\[r\ - радиус\ основания;\]
\[\text{h\ } - высота\ цилиндра.\]
\[1)\ Диагональ\ цилиндра:\]
\[(2r)^{2} + h^{2} = d^{2}\]
\[4r^{2} + h^{2} = (2R)^{2}\]
\[h^{2} = 4R^{2} - 4r^{2}\]
\[h = 2\sqrt{R^{2} - r^{2}}.\]
\[2)\ Площадь\ боковой\ \]
\[поверхности:\]
\[S(r) = 2\pi r \bullet h =\]
\[= 2\pi r \bullet 2\sqrt{R^{2} - r^{2}} =\]
\[= 4\pi\sqrt{R^{2}r^{2} - r^{4}};\]
\[S^{'}(r) = 4\pi \bullet \frac{2R^{2}r - 4r^{3}}{2\sqrt{R^{2}r^{2} - r^{4}}} =\]
\[= \frac{4\pi r\left( R^{2} - 2r^{2} \right)}{\sqrt{R^{2}r^{2} - r^{4}}}.\]
\[3)\ Промежуток\ возрастания:\]
\[R^{2} - 2r^{2} \geq 0\]
\[2r^{2} \leq R^{2}\]
\[r^{2} \leq \frac{R^{2}}{2}\]
\[- \frac{R}{\sqrt{2}} \leq r \leq \frac{R}{\sqrt{2}}.\]
\[4)\ Точка\ максимума:\]
\[r = \frac{R}{\sqrt{2}}.\]
\[Ответ:\ \ \frac{R}{\sqrt{2}}.\]