\[r\ дм - радиус\ основания;\]
\[\text{h\ }дм - высота\ конуса.\]
\[1)\ Образующая:\]
\[l^{2} = r^{2} + h^{2} = 20^{2}\]
\[r^{2} + h^{2} = 400\]
\[r^{2} = 400 - h^{2}.\]
\[2)\ V(h) = \frac{1}{3}Sh = \frac{1}{3} \bullet \pi r^{2} \bullet h =\]
\[= \frac{1}{3} \bullet \pi h\left( 400 - h^{2} \right) =\]
\[= \frac{400\pi h - \pi h^{3}}{3};\]
\[V^{'}(h) = \frac{400\pi(h)^{'} - \pi\left( h^{3} \right)^{'}}{3} =\]
\[= \frac{400\pi - 3\pi h^{2}}{3}.\]
\[3)\ Промежуток\ возрастания:\]
\[400\pi - 3\pi h^{2} \geq 0\]
\[400 - 3h^{2} \geq 0\]
\[3h^{2} \leq 400\]
\[h^{2} \leq \frac{400}{3}\]
\[- \frac{20}{\sqrt{3}} \leq h \leq \frac{20}{\sqrt{3}}.\]
\[4)\ Точка\ максимума:\]
\[h = \frac{20}{\sqrt{3}} = \frac{20\sqrt{3}}{3}.\]
\[Ответ:\ \ \frac{20\sqrt{3}}{3}\ дм.\]