\[x - сторона\ основания;\]
\[y - высота\ призмы.\]
\[1)\ Диагональ\ призмы:\]
\[d = \sqrt{x^{2} + h^{2}} = 2\sqrt{3}\]
\[\sqrt{x^{2} + h^{2}} = \sqrt{12}\]
\[x^{2} + h^{2} = 12\]
\[x^{2} = 12 - h^{2}.\]
\[2)\ V(h) = S \bullet h = x^{2} \bullet h =\]
\[= \left( 12 - h^{2} \right)h = 12h - h^{3};\]
\[V^{'}(h) = (12h)^{'} - \left( h^{3} \right)^{'} =\]
\[= 12 - 3h^{2}.\]
\[3)\ Промежуток\ возрастания:\]
\[12 - 3h^{2} \geq 0\]
\[4 - h^{2} \geq 0\]
\[(h + 2)(h - 2) \leq 0\]
\[- 2 \leq h \leq 2.\]
\[4)\ Точка\ максимума:\]
\[h = 2.\]
\[Ответ:\ \ 2.\]