\[AB = BC = AC = x;\ \ \text{SO} = h:\]
\[x + h = SO + AC = 9\]
\[h = 9 - x\]
\[1 \leq x \leq 8.\]
\[1)\ V(x) = \frac{1}{3}S_{осн} \bullet h =\]
\[= \frac{1}{3} \bullet \frac{x^{2}\sqrt{3}}{4} \bullet (9 - x) =\]
\[= \frac{\sqrt{3}}{12} \bullet \left( 9x^{2} - x^{3} \right);\]
\[V^{'}(x) = \frac{\sqrt{3}}{12}\left( 9 \bullet 2x - 3x^{2} \right) =\]
\[= \frac{3\sqrt{3}}{12}\left( 6x - x^{2} \right).\]
\[2)\ Промежуток\ возрастания:\]
\[6x - x^{2} \geq 0\]
\[x(6 - x) \geq 0\]
\[x(x - 6) \leq 0\]
\[0 \leq x \leq 6.\]
\[3)\ Точка\ максимума:\]
\[x = 6.\]
\[Ответ:\ \ 6.\]