\[f(x) = x^{- 2} + \cos x;\]
\[M\left( 0,5\pi;\ - \frac{2}{\pi} \right).\]
\[1)\ Первообразные\ функции:\]
\[F(x) = \frac{x^{- 1}}{- 1} + \sin x + C =\]
\[= \sin x - \frac{1}{x} + C.\]
\[2)\ Проходящая\ через\ точку\ M:\]
\[- \frac{2}{\pi} = \sin\left( \frac{\pi}{2} \right) - \frac{1}{0,5\pi} + C\]
\[- \frac{2}{\pi} = 1 - \frac{2}{\pi} + C\]
\[C = - 1.\]
\[Ответ:\ \ F(x) = \sin x - \frac{1}{x} - 1.\]