\[1)\ y = \frac{1}{3}x^{3} - x^{2} - 3x + 9\]
\[D(x) = ( - \infty;\ + \infty);\]
\[ни\ четная,\ ни\ нечетная:\]
\[f( - x) =\]
\[= \frac{1}{3}( - x)^{3} - ( - x)^{2} - 3( - x) + 9 =\]
\[= - \frac{1}{3}x^{3} - x^{2} + 3x + 9.\]
\[f^{'}(x) = \frac{1}{3} \bullet 3x^{2} - 2x - 3 =\]
\[= x^{2} - 2x - 3.\]
\[Промежуток\ возрастания:\]
\[x^{2} - 2x - 3 \geq 0\]
\[D = 4 + 12 = 16\]
\[x_{1} = \frac{2 - 4}{2} = - 1;\]
\[x_{2} = \frac{2 + 4}{2} = 3;\]
\[(x + 1)(x - 3) \geq 0\]
\[x \leq - 1;\text{\ \ \ }x \geq 3.\]
\[Максимум\ и\ минимум:\]
\[y( - 1) = - \frac{1}{3} - 1 + 3 + 9 =\]
\[= 11 - \frac{1}{3} = 10\frac{2}{3};\]
\[y(3) = \frac{27}{3} - 9 - 9 + 9 =\]
\[= 9 - 9 = 0.\]
\[2)\ y = - x^{4} + 6x^{2} - 9\]
\[D(x) = ( - \infty;\ + \infty);\]
\[является\ четной:\]
\[f( - x) = - ( - x)^{4} + 6\left( x^{2} \right) - 9 =\]
\[= - x^{4} + 6x^{2} - 9 = f(x).\]
\[f^{'}(x) = - 4x^{3} + 6 \bullet 2x =\]
\[= 12x - 4x^{3}.\]
\[Промежуток\ возрастания:\]
\[12x - 4x^{3} \geq 0\]
\[4x\left( 3 - x^{2} \right) \geq 0\]
\[\left( x + \sqrt{3} \right)x\left( x - \sqrt{3} \right) \leq 0\]
\[x \leq - \sqrt{3};\ \ \ 0 \leq x \leq \sqrt{3}.\]
\[Максимум\ и\ минимум:\]
\[y\left( \sqrt{3} \right) = - 9 + 18 - 9 = 0;\]
\[y(0) = - 0^{4} + 6 \bullet 0^{2} - 9 = - 9.\]
\[3)\ y = \frac{x^{2} + 1}{x}\]
\[D(x) = ( - \infty;\ 0) \cup (0;\ + \infty);\]
\[является\ нечетной:\]
\[f( - x) = \frac{( - x)^{2} + 1}{- x} =\]
\[= - \frac{x^{2} + 1}{x} = - f(x);\]
\[f^{'}(x) = \left( x + \frac{1}{x} \right)^{'} = 1 - \frac{1}{x^{2}}.\]
\[Промежуток\ возрастания:\]
\[1 - \frac{1}{x^{2}} \geq 0\]
\[x^{2} - 1 \geq 0\]
\[(x + 1)(x - 1) \geq 0\]
\[x \leq - 1;\text{\ \ \ x} \geq 1.\]
\[Максимум\ и\ минимум:\]
\[y(1) = \frac{1^{2} + 1}{1} = 2.\]
\[\lim_{x \rightarrow + \infty}\frac{f(x)}{x} = \lim_{x \rightarrow + \infty}\frac{x^{2} + 1}{x^{2}} =\]
\[= \frac{1 + 0}{1} = 1;\]
\[\lim_{x \rightarrow + \infty}\left( f(x) - x \right) = \lim_{x \rightarrow + \infty}\frac{1}{x} = 0;\]
\[y = x;\ \text{\ \ \ x} = 0.\]
\[4)\ y = \frac{x^{2} + 2}{2x}\]
\[D(x) = ( - \infty;\ 0) \cup (0;\ + \infty);\]
\[является\ нечетной:\]
\[f( - x) = \frac{( - x)^{2} + 2}{2( - x)} =\]
\[= - \frac{x^{2} + 2}{2x} = - f(x).\]
\[f^{'}(x) = \left( \frac{x}{2} + \frac{1}{x} \right)^{'} = \frac{1}{2} - \frac{1}{x^{2}}.\]
\[Промежуток\ возрастания:\]
\[\frac{1}{2} - \frac{1}{x^{2}} \geq 0\]
\[x^{2} - 2 \geq 0\]
\[\left( x + \sqrt{2} \right)\left( x - \sqrt{2} \right) \geq 0\]
\[x \leq - \sqrt{2};\ \ \ x \geq \sqrt{2}.\]
\[Максимум\ и\ минимум:\]
\[y\left( \sqrt{2} \right) = \frac{2 + 2}{2\sqrt{2}} = \frac{4}{2\sqrt{2}} =\]
\[= \frac{2}{\sqrt{2}} = \sqrt{2}.\]
\[\lim_{x \rightarrow + \infty}\frac{f(x)}{x} = \lim_{x \rightarrow + \infty}\frac{x^{2} + 2}{2x^{2}} =\]
\[= \frac{1 + 0}{2} = \frac{1}{2};\]
\[\lim_{x \rightarrow + \infty}\left( f(x) - \frac{x}{2} \right) = \lim_{x \rightarrow + \infty}\frac{1}{x} = 0;\]
\[y = \frac{x}{2};\text{\ \ \ x} = 0.\]