\[1)\ y = - \frac{x^{4}}{4} + x^{2}\]
\[D(x) = ( - \infty;\ + \infty);\]
\[является\ четной:\]
\[f( - x) = - \frac{( - x)^{4}}{4} + ( - x)^{2} =\]
\[= - \frac{x^{4}}{4} + x^{2} = f(x);\]
\[f^{'}(x) = - \frac{1}{4} \bullet 4x^{3} + 2x =\]
\[= 2x - x^{3}.\]
\[Промежуток\ возрастания:\]
\[2x - x^{3} \geq 0\]
\[x\left( 2 - x^{2} \right) \geq 0\]
\[\left( x + \sqrt{2} \right)x\left( x - \sqrt{2} \right) \leq 0\]
\[x \leq - \sqrt{2};\ \ \ 0 \leq x \leq \sqrt{2}.\]
\[Максимум\ и\ минимум:\]
\[y\left( \sqrt{2} \right) = - \frac{4}{4} + 2 = - 1 + 2 = 1;\]
\[y(0) = - \frac{0^{4}}{4} + 0^{2} = 0.\]
\[2)\ y = x^{4} - 2x^{2} - ;\]
\[D(x) = ( - \infty;\ + \infty);\]
\[является\ четной:\]
\[f( - x) = ( - x)^{4} - 2( - x)^{2} - 3 =\]
\[= x^{4} - 2x^{2} - 3 = f(x);\]
\[f^{'}(x) = 4x^{3} - 2 \bullet 2x - 0 =\]
\[= 4x^{3} - 4x.\]
\[Промежуток\ возрастания:\]
\[4x^{3} - 4x \geq 0\]
\[4x\left( x^{2} - 1 \right) \geq 0\]
\[(x + 1)x(x - 1) \geq 0\]
\[- 1 \leq x \leq 0;\ \text{\ \ }x \geq 1.\]
\[Максимум\ и\ минимум:\]
\[y(1) = 1 - 2 - 3 = - 4;\]
\[y(0) = 0^{4} - 2 \bullet 0^{2} - 3 = - 3.\]