\[1)\ f(x) = 4x^{3} + 6x^{2}\]
\[D(x) = ( - \infty;\ + \infty);\]
\[ни\ четная,\ ни\ нечетная:\]
\[f( - x) = 4( - x)^{3} + 6( - x)^{2} =\]
\[= - 4x^{3} + 6x^{2};\]
\[f^{'}(x) = 4 \bullet 3x^{2} + 6 \bullet 2x =\]
\[= 12x^{2} + 12x;\]
\[Промежуток\ возрастания:\]
\[12x^{2} + 12x \geq 0\]
\[x^{2} + x \geq 0\]
\[(x + 1)x \geq 0\]
\[x \leq - 1;\text{\ \ }\ x \geq 0.\]
\[Максимум\ и\ минимум:\]
\[y( - 1) = - 4 + 6 = 2;\]
\[y(0) = 4 \bullet 0^{3} + 6 \bullet 0^{2} = 0.\]
\[2)\ f(x) = 3x^{2} - 2x^{3}\]
\[D(x) = ( - \infty;\ + \infty);\]
\[ни\ четная,\ ни\ нечетная:\]
\[f( - x) = 3( - x)^{2} - 2( - x)^{3} =\]
\[= 3x^{2} + 2x^{3};\]
\[f^{'}(x) = 3 \bullet 2x - 2 \bullet 3x^{2} =\]
\[= 6x - 6x^{2};\]
\[Промежуток\ возрастания:\]
\[6x - 6x^{2} \geq 0\]
\[x - x^{2} \geq 0\]
\[x(1 - x) \geq 0\]
\[x(x - 1) \leq 0\]
\[0 \leq x \leq 1.\]
\[Максимум\ и\ минимум:\]
\[y(1) = 3 - 2 = 1;\]
\[y(0) = 3 \bullet 0^{2} - 2 \bullet 0^{3} = 0.\]
\[3)\ f(x) = \frac{1}{3}x^{3} - x\]
\[D(x) = ( - \infty;\ + \infty);\]
\[является\ нечетной:\]
\[f( - x) = \frac{1}{3}( - x)^{3} - ( - x) =\]
\[= - \frac{1}{3}x^{3} + x = - f(x).\]
\[f^{'}(x) = \frac{1}{3} \bullet 3x^{2} - 1 = x^{2} - 1.\]
\[Промежуток\ возрастания:\]
\[x^{2} - 1 \geq 0\]
\[(x + 1)(x - 1) \geq 0\]
\[x \leq - 1;\text{\ \ \ x} \geq 1.\]
\[Максимум\ и\ минимум:\]
\[y( - 1) = \frac{1}{3} \bullet ( - 1) + 1 = \frac{2}{3};\]
\[y(1) = \frac{1}{3} \bullet 1 - 1 = - \frac{2}{3}.\]
\[4)\ f(x) = x^{4} - \frac{1}{2}x^{2}\]
\[D(x) = ( - \infty;\ + \infty);\]
\[является\ четной:\]
\[f( - x) = ( - x)^{4} - \frac{1}{2}( - x)^{2} =\]
\[= x^{4} - \frac{1}{2}x^{2} = f(x).\]
\[f^{'}(x) = 4x^{3} - \frac{1}{2} \bullet 2x = 4x^{3} - x.\]
\[Промежуток\ возрастания:\]
\[4x^{3} - x \geq 0\]
\[x\left( 4x^{2} - 1 \right) \geq 0\]
\[(2x + 1)x(2x - 1) \geq 0\]
\[- \frac{1}{2} \leq x \leq 0;\ \ \ x \geq \frac{1}{2}.\]
\[Максимум\ и\ минимум:\]
\[y(0) = 0^{4} - \frac{1}{2} \bullet 0^{2} = 0;\]
\[y\left( \frac{1}{2} \right) = \frac{1}{16} - \frac{1}{2} \bullet \frac{1}{4} = - \frac{1}{16}.\]