\[y = x^{3} - 5x^{2} - x + 5;\]
\[y^{'}(x) = \left( x^{3} \right)^{'} - 5\left( x^{2} \right)^{'} - (x - 5)^{'} =\]
\[= 3x^{2} - 5 \bullet 2x - 1 =\]
\[= 3x^{2} - 10x - 1.\]
\[Промежуток\ возрастания:\]
\[3x^{2} - 10x - 1 \geq 0\]
\[D = 100 + 12 = 112\]
\[x = \frac{10 \pm \sqrt{112}}{2 \bullet 3} = \frac{10 \pm 4\sqrt{7}}{6} =\]
\[= \frac{5 \pm 2\sqrt{7}}{3};\]
\[x \leq \frac{5 - 2\sqrt{7}}{3};\text{\ \ \ }x \geq \frac{5 + 2\sqrt{7}}{3}.\]
\[x = \frac{5 - 2\sqrt{7}}{3} - точка\ максимума;\]
\[x = \frac{5 + 2\sqrt{7}}{3} - точка\ минимума.\]
\[Максимум\ и\ минимум:\]
\[y\left( \frac{5 - 2\sqrt{7}}{3} \right) \approx\]
\[\approx ( - 0,01)^{3} - 5( - 0,01)^{2} + 0,01 + 5 \approx 5;\]
\[y\left( \frac{5 + 2\sqrt{7}}{3} \right) \approx\]
\[\approx (3,4)^{3} - 5 \bullet {3,4}^{2} - 3,4 + 5 \approx - 16,9.\]
\[Уравнение\ касательной\ в\ x = 4:\]
\[f^{'}(4) = 3 \bullet 4^{2} - 10 \bullet 4 - 1 =\]
\[= 48 - 40 - 1 = 7;\]
\[f(4) = 4^{3} - 5 \bullet 4^{2} - 4 + 5 =\]
\[= 64 - 80 - 4 + 5 = - 15;\]
\[y = - 15 + 7(x - 4) =\]
\[= - 15 + 7x - 28 = 7x - 43.\]
\[Ответ:\ \ y = 7x - 43.\]