Решебник по алгебре и начала математического анализа 11 класс Колягин Задание 1068

Авторы:
Год:2020-2021-2022-2023
Тип:учебник

Задание 1068

\[1)\ f(x) = x^{3} + 3x^{2} - 9x + 4;\]

\[f^{'}(x) = \left( x^{3} \right)^{'} + 3\left( x^{2} \right)^{'} - (9x - 4)^{'} =\]

\[= 3x^{2} + 3 \bullet 2x - 9 =\]

\[= 3\left( x^{2} + 2x - 3 \right).\]

\[Промежуток\ возрастания:\]

\[x^{2} + 2x - 3 \geq 0\]

\[D = 4 + 12 = 16\]

\[x_{1} = \frac{- 2 - 4}{2} = - 3;\]

\[x_{2} = \frac{- 2 + 4}{2} = 1;\]

\[(x + 3)(x - 1) \geq 0\]

\[x \leq - 3;\text{\ \ }\ x \geq 1.\]

\[Ответ:\ \ \]

\[x = - 3 - точка\ максимума;\]

\[x = 1 - точка\ минимума.\]

\[2)\ f(x) = x^{4} - 2x^{5} + 5;\]

\[f^{'}(x) = \left( x^{4} \right)^{'} - 2\left( x^{5} \right)^{'} + (5)^{'} =\]

\[= 4x^{3} - 2 \bullet 5x^{4} + 0 =\]

\[= 2\left( 2x^{3} - 5x^{4} \right).\]

\[Промежуток\ возрастания:\]

\[2x^{3} - 5x^{4} \geq 0\]

\[x^{3} \bullet (2 - 5x) \geq 0\]

\[x^{3} \bullet (5x - 2) \leq 0\]

\[0 \leq x \leq 0,4.\]

\[Ответ:\ \ \]

\[x = 0,4 - точка\ максимума;\]

\[x = 0 - точка\ минимума.\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам