Решебник по алгебре и начала математического анализа 11 класс Колягин Задание 1049

Авторы:
Год:2020-2021-2022-2023
Тип:учебник

Задание 1049

\[y = 4x^{3} - 9x^{2} + 6x + 1.\]

\[1)\ k = y^{'}(x) =\]

\[= 4 \bullet 3x^{2} - 9 \bullet 2x + 6 =\]

\[= 12x^{2} - 18x + 6 =\]

\[= 6\left( 2x^{2} - 3x + 1 \right).\]

\[2)\ Касательная\ \parallel Ox:\]

\[2x^{2} - 3x + 1 = 0\]

\[D = 9 - 8 = 1\]

\[x_{1} = \frac{3 - 1}{2 \bullet 2} = \frac{1}{2} = 0,5;\]

\[x_{2} = \frac{3 + 1}{2 \bullet 2} = 1;\]

\[y_{1} = 4 \bullet \frac{1}{8} - 9 \bullet \frac{1}{4} + 6 \bullet \frac{1}{2} + 1 =\]

\[= 0,5 - 2,25 + 3 + 1 = 2,25;\]

\[y_{2} = 4 \bullet 1^{3} - 9 \bullet 1^{2} + 6 \bullet 1 + 1 =\]

\[= 4 - 9 + 6 + 1 = 2.\]

\[Ответ:\ \ (0,5;\ 2,25);\ (1;\ 2).\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам