\[1)\ На\ отрезке\ \lbrack 0;\ 2\rbrack:\]
\[y = 4x^{2} - 4ax + a^{2} - 2a + 2\]
\[y^{'}(x) = 4 \bullet 2x - 4a \geq 0\]
\[8x \geq 4a\]
\[x \geq \frac{a}{2}.\]
\[Наименьшее\ значение:\]
\[y\left( \frac{a}{2} \right) =\]
\[= 4 \bullet \frac{a^{2}}{4} - 4a \bullet \frac{a}{2} + a^{2} - 2a + 2 =\]
\[= a^{2} - 2a^{2} + a^{2} - 2a + 2 =\]
\[= 2 - 2a;\]
\[2 - 2a = 3\]
\[2a = - 1\]
\[a = - \frac{1}{2};\]
\[x = - \frac{1}{2}\ :2 = - \frac{1}{4} < 0.\]
\[{Функция\ возрастает: }{y(0) = 4 \bullet 0^{2} - 4a \bullet 0 + a^{2} - 2a + 2 = 3;}\]
\[a^{2} - 2a - 1 = 0;\ \ \ \ \frac{a}{2} \leq 0;\]
\[D = 4 + 4 = 8\]
\[a = \frac{2 \pm 8}{2} = \frac{2 \pm 2\sqrt{2}}{2} =\]
\[= 1 \pm \sqrt{2};\ \ \ a \leq 0.\]
\[Функция\ убывает:\]
\[y(2) = 4 \bullet 2^{2} - 4a \bullet 2 + a^{2} - 2a + 2 = 3;\]
\[16 - 8a + a^{2} - 2a - 1 = 0;\ \ \frac{a}{2} \geq 2;\]
\[a^{2} - 10a + 15 = 0\]
\[D = 100 - 60 = 40\]
\[a = \frac{10 \pm \sqrt{40}}{2} = \frac{10 \pm 2\sqrt{10}}{2} =\]
\[= 5 \pm \sqrt{10};\ \ \ x \geq 2.\]
\[Ответ:\ \ 1 - \sqrt{2};\ 5 + \sqrt{10}.\]
\[2) > 1:\]
\[y = 4ax + \left| x^{2} - 8x + 7 \right|\]
\[x^{2} - 8x + 7 \geq 0\]
\[D = 8^{2} - 4 \bullet 7 = 64 - 28 = 36\]
\[x_{1} = \frac{8 - 6}{2} = 1;\]
\[x_{2} = \frac{8 + 6}{2} = 7;\]
\[(x - 1)(x - 7) \geq 0\]
\[x \leq 1;\ \ \ x \geq 7.\]
\[x \leq 1\ и\ x \geq 7:\]
\[y = 4ax + x^{2} - 8x + 7\]
\[y^{'}(x) = 4a + 2x - 8 \geq 0\]
\[2x \geq 8 - 4a\]
\[x \geq 4 - 2a.\]
\[- 4a^{2} + 16a - 10 > 0\]
\[2a^{2} - 8a + 5 < 0\]
\[D = 64 - 40 = 24\]
\[a = \frac{8 \pm \sqrt{24}}{2 \bullet 2} = \frac{8 \pm 2\sqrt{6}}{4} =\]
\[= \frac{4 \pm \sqrt{6}}{2};\]
\[\frac{4 - \sqrt{6}}{2} < a < \frac{4 + \sqrt{6}}{2};\]
\[x = 4 - \left( 4 \pm \sqrt{6} \right) = \mp \sqrt{6}.\]
\[1 \leq x \leq 7:\]
\[y = 4ax - x^{2} + 8x - 7;\]
\[y^{'}(x) = 4a - 2x + 8 \geq 0;\]
\[2x \leq 8 + 4a\]
\[x \leq 4 + 2a\]
\[4a \bullet 1 - 1^{2} + 8 \bullet 1 - 7 > 1\]
\[4a - 1 + 8 - 8 > 0\]
\[4a > 1\]
\[a > \frac{1}{4}.\]
\[Ответ:\ \ a \in \left( \frac{1}{4};\ \frac{4 + \sqrt{6}}{2} \right).\]