\[y = - 5;\]
\[y = 4x^{2} + 8ax - a;\]
\[y = 4ax^{2} - 8x + a - 2.\]
\[1)\ y = 4x^{2} + 8ax - a:\]
\[x_{0} = - \frac{b}{2a} = - \frac{8a}{2 \bullet 4} = - \frac{8a}{8} = - a;\]
\[y_{0} = 4a^{2} - 8a^{2} - a =\]
\[= - 4a^{2} - a > - 5;\]
\[4a^{2} + a - 5 < 0\]
\[D = 1 + 80 = 81:\]
\[a_{1} = \frac{- 1 - 9}{2 \bullet 4} = - \frac{5}{4};\ \]
\[a_{2} = \frac{- 1 + 9}{2 \bullet 4} = 1;\]
\[\left( a + \frac{5}{4} \right)(a - 1) < 0\]
\[- \frac{5}{4} < a < 1.\]
\[2)\ y = 4ax^{2} - 8x + a - 2:\]
\[x_{0} = - \frac{b}{2a} = - \frac{- 8}{2 \bullet 4a} = \frac{8}{8a} = \frac{1}{a};\]
\[y_{0} = \frac{4}{a} - \frac{8}{a} + a - 2 =\]
\[= a - \frac{4}{a} - 2 > - 5;\]
\[a + 3 - \frac{4}{a} > 0\]
\[\frac{a^{2} + 3a - 4}{a} > 0\]
\[D = 9 + 16 = 25\]
\[a_{1} = \frac{- 3 - 5}{2} = - 4;\]
\[a_{2} = \frac{- 3 + 5}{2} = 1;\]
\[\frac{(a + 4)(a - 1)}{a} > 0\]
\[- 4 < a < 0;\ \ \ a > 1.\]
\[Ответ:\ \ \]
\[a \in ( - \infty;\ - 4) \cup \left( - \frac{5}{4};\ 0 \right).\]