\[На\ отрезке\ \lbrack 0;\ 2\rbrack\ равно\ ( - 4).\]
\[y = x^{2} + (a + 4)x + 2a + 3;\]
\[y^{'}(x) = 2x + (a + 4) \geq 0;\]
\[2x \geq - (a + 4)\]
\[x \geq - \frac{a + 4}{2}.\]
\[1)\ y_{наим} =\]
\[= \frac{(a + 4)^{2}}{4} - \frac{(a + 4)^{2}}{2} + 2a + 3 =\]
\[= - \frac{(a + 4)^{2}}{4} + 2a + 3 = - 4;\]
\[(a + 4)^{2} - 4(2a + 3) = 16\]
\[a^{2} + 8a + 16 - 8a - 12 = 16\]
\[a^{2} = 12\]
\[a = \pm \sqrt{12} = \pm 2\sqrt{3};\]
\[x = - \frac{\pm 2\sqrt{3} + 4}{2} = \mp \sqrt{3} - 2 < 0.\]
\[2)\ Функция\ возрастает:\]
\[y(0) =\]
\[= 0^{2} + (a + 4) \bullet 0 + 2a + 3 = - 4;\]
\[2a = - 7\]
\[a = - 3,5.\]
\[- \frac{a + 4}{2} \leq 0\ \ \]
\[a + 4 \geq 0.\]
\[3)\ Функция\ убывает:\]
\[y(2) =\]
\[= 2^{2} + (a + 4) \bullet 2 + 2a + 3 = - 4;\]
\[4 + 2a + 8 + 2a = - 7\]
\[4a = - 19\]
\[a = - 4,75.\ \ \]
\[a + 4 \leq - 4\]
\[- \frac{a + 4}{2} \geq 2\]
\[a \leq - 8.\]
\[Ответ:\ \ a = - 3,5.\]