\[y = 6\cos^{2}x + 6\sin x - 2 =\]
\[= 6\left( 1 - \sin^{2}x \right) + 6\sin x - 2 =\]
\[= 6 - 6\sin^{2}x + 6\sin x - 2 =\]
\[= - 6\sin^{2}x + 6\sin x + 4.\]
\[1)\ \sin x_{0} = - \frac{b}{2a} = - \frac{6}{2 \bullet ( - 6)} =\]
\[= \frac{6}{12} = \frac{1}{2};\]
\[y\left( x_{0} \right) = - 6 \bullet \frac{1}{4} + 6 \bullet \frac{1}{2} + 4 =\]
\[= - 1,5 + 3 + 4 = 5,5;\]
\[f(0) = - 6 \bullet 0^{2} + 6 \bullet 0 + 4 = 4;\]
\[f(1) = - 6 \bullet 1^{2} + 6 \bullet 1 + 4 =\]
\[= - 6 + 6 + 4 = 4.\]
\[2)\ Точки\ максимума:\]
\[\sin x = \frac{1}{2}\]
\[x = ( - 1)^{n} \bullet \arcsin\frac{1}{2} + \pi n =\]
\[= ( - 1)^{n} \bullet \frac{\pi}{6} + \pi n.\]
\[Ответ:\ \ ( - 1)^{n} \bullet \frac{\pi}{6} + \pi n.\]