\[1)\ y = 3^{x} + 1\]
\[D(x) = ( - \infty;\ + \infty);\]
\[ни\ четная,\ ни\ нечетная:\]
\[y( - x) = 3^{- x} + 1 = \frac{1}{3^{x}} + 1;\]
\[\lim_{x \rightarrow - \infty}\left( 3^{x} + 1 \right) = 0 + 1 = 1;\]
\[y^{'}(x) = \left( 3^{x} \right)^{'} + 1^{'} = 3^{x}\ln 3 > 0;\]
\[E(y) = (1;\ + \infty).\]
\[2)\ y = \left( \frac{1}{2} \right)^{x} - 3\]
\[D(x) = ( - \infty;\ + \infty);\]
\[ни\ четная,\ ни\ нечетная:\]
\[y( - x) = \left( \frac{1}{2} \right)^{- x} - 3 = 2^{x} - 3;\]
\[\lim_{x \rightarrow + \infty}\left( \left( \frac{1}{2} \right)^{x} - 3 \right) = 0 - 3 = - 3;\]
\[y^{'}(x) = {\left( \frac{1}{2} \right)^{x}}^{'} - 3^{'} =\]
\[= \left( \frac{1}{2} \right)^{x}\ln\left( \frac{1}{2} \right) < 0;\]
\[E(y) = ( - 3;\ + \infty);\]
\[3)\ y = \log_{2}(x + 1)\]
\[x + 1 > 0\]
\[x > - 1;\]
\[D(x) = ( - 1;\ + \infty);\]
\[ни\ четная,\ ни\ нечетная:\]
\[y( - x) = \log_{2}( - x + 1);\]
\[y^{'}(x) = \left( \log_{2}(x + 1) \right)^{'} =\]
\[= \frac{1}{(x + 1) \bullet \ln 2};\]
\[Промежуток\ возрастания:\]
\[x + 1 > 0.\]
\[x > - 1.\]
\[E(y) = ( - \infty;\ + \infty);\]
\[4)\ y = \log_{\frac{1}{3}}(x - 1)\]
\[x - 1 > 0\]
\[x > 1;\]
\[D(x) = (1;\ + \infty);\]
\[ни\ четная,\ ни\ нечетная:\]
\[y( - x) = \log_{\frac{1}{3}}( - x - 1);\]
\[y^{'}(x) = \left( \log_{\frac{1}{3}}(x - 1) \right)^{'} =\]
\[= \frac{1}{(x - 1) \bullet \ln\frac{1}{3}};\]
\[Промежуток\ убывания:\]
\[x - 1 > 0\]
\[x > 1.\]
\[E(y) = ( - \infty;\ + \infty).\]
\[5)\ y = \sqrt{x + 1} - 2\]
\[x + 1 \geq 0\]
\[x \geq - 1;\]
\[D(x) = \lbrack - 1;\ + \infty);\]
\[ни\ четная,\ ни\ нечетная:\]
\[y( - x) = \sqrt{- x + 1} - 2;\]
\[y^{'}(x) = \frac{(x + 1)^{'}}{2\sqrt{x + 1}} - 2^{'} =\]
\[= \frac{1}{2\sqrt{x + 1}} > 0;\]
\[y( - 1) = \sqrt{- 1 + 1} - 2 = - 2;\]
\[E(y) = \lbrack - 2;\ + \infty).\]
\[6)\ y = \sqrt{2x - 1} + 1\]
\[2x - 1 \geq 0\]
\[x \geq 0,5;\]
\[D(x) = \lbrack 0,5;\ + \infty);\]
\[ни\ четная,\ ни\ нечетная:\]
\[y( - x) = \sqrt{- 2x - 1} + 1;\]
\[y^{'}(x) = \frac{(2x - 1)^{'}}{2\sqrt{2x - 1}} - 1^{'} =\]
\[= \frac{2}{2\sqrt{2x - 1}} > 0;\]
\[y(0,5) = \sqrt{2 \bullet 0,5 - 1} + 1 = 1;\]
\[E(y) = \lbrack 1;\ + \infty).\]