\[y = \sqrt{25 - x^{2}}\]
\[25 - x^{2} \geq 0\]
\[(x + 5)(x - 5) \leq 0\]
\[- 5 \leq x \leq 5.\]
\[D(x) = \lbrack - 5;\ 5\rbrack.\]
\[Функция\ четная:\]
\[y( - x) = \sqrt{25 - ( - x)^{2}} =\]
\[= \sqrt{25 - x^{2}} = y(x).\]
\[Что\ и\ требовалось\ доказать.\]
\[2)\ y^{'}(x) = \frac{25^{'} - \left( x^{2} \right)^{'}}{2\sqrt{25 - x^{2}}} =\]
\[= \frac{- 2x}{2\sqrt{25 - x^{2}}} = - \frac{x}{\sqrt{25 - x^{2}}}.\]
\[Стационарные\ точки:\]
\[x = 0;\]
\[y(0) = \sqrt{25 - 0^{2}} = \sqrt{25} = 5.\]
\[Критические\ точки:\]
\[y( \pm 5) = \sqrt{25 - ( \pm 5)^{2}} =\]
\[= \sqrt{25 - 25} = 0.\]
\[Ответ:\ \ возрастает\ на\ \lbrack - 5;\ 0\rbrack\ и\ \]
\[\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ убывает\ на\ \lbrack 0;\ 5\rbrack.\]