\[1)\ y = 2^{x} + 2^{- x}\]
\[D(x) = ( - \infty;\ + \infty);\]
\[y( - x) = 2^{- x} + 2^{- ( - x)} =\]
\[= 2^{x} + 2^{- x} = y(x).\]
\[Ответ:\ \ четная.\]
\[2)\ y = 3^{x} - 3^{- x}\]
\[D(x) = ( - \infty;\ + \infty);\]
\[y( - x) = 3^{- x} - 3^{- ( - x)} =\]
\[= - 3^{x} + 3^{- x} = - y(x).\]
\[Ответ:\ \ нечетная.\]
\[3)\ y = \ln\frac{3 + x}{3 - x}\]
\[D(x) = ( - 3;\ 3);\]
\[y( - x) = \ln\frac{3 - x}{3 - ( - x)} =\]
\[= \ln\frac{3 - x}{3 + x} =\]
\[= \ln(3 - x) - \ln(3 + x) =\]
\[= - \left( \ln(3 + x) - \ln(3 - x) \right) =\]
\[= - \ln\frac{3 + x}{3 - x} = - y(x).\]
\[Ответ:\ \ нечетная.\]
\[4)\ y = \left| \ln\frac{5 + x}{5 - x} \right|\]
\[D(x) = ( - 5;\ 5);\]
\[y( - x) = \left| \ln\frac{5 - x}{5 - ( - x)} \right| =\]
\[= \left| \ln\frac{5 - x}{5 + x} \right| =\]
\[= \left| \ln(5 - x) - \ln(5 + x) \right| =\]
\[= \left| \ln(5 + x) - \ln(5 - x) \right| =\]
\[= \left| \ln\frac{5 + x}{5 - x} \right| = y(x).\]
\[Ответ:\ \ четная.\]