\[1)\ y = \frac{\cos x}{1,5 - \sin x}\]
\[- 1 \leq - \sin x \leq 1;\]
\[0,5 \leq 1,5 - \sin x \leq 2,5;\]
\[\frac{2}{5} \leq \frac{1}{1,5 - \sin x} \leq 2;\]
\[- 2 \leq \frac{\cos x}{1,5 - \sin x} \leq 2.\]
\[Что\ и\ требовалось\ доказать.\]
\[2)\ y = \frac{1}{\sqrt{3} - \left( \sin x + \cos x \right)}\]
\[- 1 \leq \sin\left( x + \frac{\pi}{4} \right) \leq 1;\]
\[- 1 \leq \cos\frac{\pi}{4}\sin x + \sin\frac{\pi}{4}\cos x \leq 1;\]
\[- 1 \leq \frac{\sqrt{2}}{2}\left( \sin x + \cos x \right) \leq 1;\]
\[- \sqrt{2} \leq \sin x + \cos x \leq \sqrt{2};\]
\[Что\ и\ требовалось\ доказать.\]