\[1)\ y = \sin^{4}x + \cos^{4}x =\]
\[= 1 - \frac{1}{4} + \frac{1}{4}\cos{4x} =\]
\[= \frac{3}{4} + \frac{1}{4}\cos{4x}.\]
\[- 1 \leq \cos{4x} \leq 1;\]
\[- \frac{1}{4} \leq \frac{1}{4}\cos{4x} \leq \frac{1}{4};\]
\[\frac{1}{2} \leq \frac{3}{4} + \frac{1}{4}\cos{4x} \leq 1;\]
\[E(y) = \left\lbrack \frac{1}{2};\ 1 \right\rbrack.\]
\[2)\ y = \sin^{6}x + \cos^{6}x =\]
\[= 1 - \frac{3}{4}\sin^{2}{2x} = 1 - \frac{3}{8}\left( 1 - \cos{4x} \right) =\]
\[= 1 - \frac{3}{8} + \frac{3}{8}\cos{4x} =\]
\[= \frac{5}{8} + \frac{3}{8}\cos{4x}.\]
\[- 1 \leq \cos{4x} \leq 1;\]
\[- \frac{3}{8} \leq \frac{3}{8}\cos{4x} \leq \frac{3}{8};\]
\[\frac{1}{4} \leq \frac{5}{8} + \frac{3}{8}\cos{4x} \leq 1;\]
\[E(y) = \left\lbrack \frac{1}{4};\ 1 \right\rbrack.\]