\[\mathbf{1.}\ \]
\[1)\ y = 2x^{2} - 5x;\]
\[y^{'}(x) = 2 \bullet 2x - 5 \geq 0;\]
\[4x \geq 5\]
\[x \geq 1\frac{1}{4}.\]
\[Ответ:\ \ \]
\[возрастает\ на\ \left\lbrack 1\frac{1}{4};\ + \infty \right);\]
\[убывает\ на\ \left( - \infty;\ 1\frac{1}{4} \right\rbrack.\]
\[2)\ y = - \sqrt{x + 4};\]
\[y^{'}(x) = - \frac{1}{2\sqrt{x + 4}} < 0;\]
\[x + 4 > 0\]
\[x > - 4.\]
\[Ответ:\ \ убывает\ на\ \lbrack - 4;\ + \infty).\]
\[\mathbf{2}.\]
\[y = x^{4} - 4x^{3} + 20;\]
\[y^{'}(x) = 4x^{3} - 4 \bullet 3x^{2} \geq 0;\]
\[4x^{2} \bullet (x - 3) \geq 0\]
\[x \geq 3;\]
\[y(3) = 81 - 108 + 20 = - 7.\]
\[Ответ:\ \ x_{\min} = 3;\ y(3) = - 7.\]
\[\mathbf{3.}\text{\ y}\]
\[= x^{3} + 3x^{2} - 4;\]
\[y^{'}(x) = 3x^{2} + 3 \bullet 2x \geq 0;\]
\[3x(x + 2) \geq 0\]
\[x \leq - 2;\text{\ \ \ x} \geq 0.\]
\[y( - 2) = - 8 + 12 - 4 = 0;\]
\[y(0) = 0 + 0 - 4 = - 4.\]
\[\mathbf{4}\text{.\ }\]
\[f(x) = x + \frac{9}{x};\ \ \ x \in \lbrack 1;\ 4\rbrack:\]
\[f^{'}(x) = 1 - \frac{9}{x^{2}} \geq 0;\]
\[\frac{x^{2} - 9}{x^{2}} \geq 0\]
\[\frac{(x + 3)(x - 3)}{x^{2}} \geq 0\]
\[x \leq - 3;\text{\ \ \ x} \geq 3.\]
\[f(1) = 1 + 9 = 10;\]
\[f(3) = 3 + 3 = 6;\]
\[f(4) = 4 + 2,25 = 6,25.\]
\[Ответ:\ \ 10;\ 6.\]
\[\mathbf{5}\text{.\ }\]
\[a,\ b,\ c\ дм - стороны\ отливки:\]
\[a\ :b = 1\ :2;\]
\[b = 2a;\]
\[\text{abc} = 72;\]
\[c = \frac{72}{\text{ab}} = \frac{72}{2a^{2}} = \frac{36}{a^{2}}.\]
\[Площадь\ поверхности:\]
\[S(a) = 2ab + 2ac + 2bc =\]
\[= 4a^{2} + \frac{72}{a} + \frac{144}{a} =\]
\[= 4a^{2} + \frac{216}{a};\]
\[S^{'}(a) = 4 \bullet 2a - \frac{216}{a^{2}} \geq 0.\]
\[8a^{3} - 216 \geq 0\]
\[8a^{3} \geq 216\]
\[a^{3} \geq 27\]
\[a \geq 3.\]
\[Точка\ минимума:\]
\[a = 3;\]
\[b = 2 \bullet 3 = 6;\]
\[c = \frac{36}{3^{2}} = \frac{36}{9} = 4.\]
\[Ответ:\ \ 3\ дм;\ 4\ дм;\ 6\ дм.\]