\[\mathbf{1}.\]
\[x_{n} = \frac{2n^{4} + n^{2} - 4}{3n^{4} - n^{3} + 2};\]
\[\lim_{n \rightarrow \infty}x_{n} = \lim_{n \rightarrow \infty}\frac{2n^{4} + n^{2} - 4}{3n^{4} - n^{3} + 2} =\]
\[= \lim_{n \rightarrow \infty}\frac{2 + \frac{1}{n^{2}} - \frac{4}{n^{4}}}{3 - \frac{1}{n} + \frac{2}{n^{4}}} =\]
\[= \frac{2 + 0 - 0}{3 - 0 + 0} = \frac{2}{3}.\]
\[Ответ:\ \ \frac{2}{3}.\]
\[\mathbf{2}.\]
\[\lim_{n \rightarrow 3}\frac{x^{2} - 6x + 9}{x - 3} =\]
\[= \lim_{n \rightarrow 3}\frac{(x - 3)^{2}}{x - 3} = \lim_{n \rightarrow 3}(x - 3) = 0.\]
\[Ответ:\ \ нет.\]
\[\mathbf{3.\ }\]
\[f(x) = 2\sqrt{x} - 3\ln(x + 2);\]
\[f^{'}(x) = 2 \bullet \frac{1}{2\sqrt{x}} - 3 \bullet \frac{1}{x + 2} = 0;\]
\[(x + 2) - 3\sqrt{x} = 0\]
\[x + 2 = 3\sqrt{x}\]
\[x^{2} + 4x + 4 = 9x\]
\[x^{2} - 5x + 4 = 0\]
\[D = 25 - 16 = 9\]
\[x_{1} = \frac{5 - 3}{2} = 1;\]
\[x_{2} = \frac{5 + 3}{2} = 4.\]
\[Ответ:\ \ 1;\ 4.\]
\[\mathbf{4}\text{.\ }\]
\[f(x) = \frac{1}{3}x^{3} - x^{2} + 5;\text{\ \ }\]
\[y = 3x - 2;\]
\[y^{'}(x) = \frac{1}{3} \bullet 3x^{2} - 2x = 3;\]
\[x^{2} - 2x - 3 = 0\]
\[D = 4 + 12 = 16\]
\[x_{1} = \frac{2 - 4}{2} = - 1;\ \]
\[x_{2} = \frac{2 + 4}{2} = 3;\]
\[f( - 1) = - \frac{1}{3} - 1 + 5 = \frac{11}{3};\]
\[f(3) = 9 - 9 + 5 = 5;\]
\[y = \frac{11}{3} + 3(x + 1) =\]
\[= 3x + 6\frac{2}{3} = 5 + 3(x - 3) =\]
\[= 3x - 4.\]
\[Ответ:\ \ y = 3x - 4;\ \]
\[\text{\ \ \ \ \ \ \ \ \ \ \ \ \ \ }y = 3x + 6\frac{2}{3}.\]