\[\mathbf{1.}\]
\[\mathbf{\ }y = tg\ 2x\]
\[2x \neq \frac{\pi}{2} + \pi n\]
\[x \neq \frac{\pi}{4} + \frac{\pi n}{2}.\]
\[y( - x) = tg( - 2x) =\]
\[= - tg\ 2x = - y(x).\]
\[Ответ:\ \ x \neq \frac{\pi}{4} + \frac{\pi n}{2};\ нечетная.\]
\[\mathbf{2.}\ \]
\[y = \sin x\ и\ y = \cos x:\]
\[1)\sin x = 1 \rightarrow x = - \frac{3\pi}{2};\]
\[\cos x = 1 \rightarrow x = - 2\pi;\]
\[2)\sin x = - 1 \rightarrow x \in \varnothing;\]
\[\cos x = 1 \rightarrow \ x = - \pi;\]
\[3)\sin x = 0 \rightarrow x = - 2\pi;\ x = - \pi;\]
\[\cos x = 0 \rightarrow x = - \frac{3\pi}{2};\]
\[4)\sin x > 0 \rightarrow - 2\pi < x < - \pi;\]
\[\cos x > 0 \rightarrow - 2\pi < x < - \frac{3\pi}{2};\]
\[5)\sin x < 0 \rightarrow \ x \in \varnothing;\]
\[\cos x < 0 \rightarrow - \frac{3\pi}{2} < x < - \pi.\]
\[\mathbf{3.}\]
\[\cos x < - \frac{1}{2};\ \ \ x \in \left\lbrack \frac{\pi}{2};\ 2\pi \right\rbrack:\]
\[\frac{2\pi}{3} + 2\pi n < x < \frac{4\pi}{3} + 2\pi n.\]
\[Ответ:\ \ \frac{2\pi}{3} < x < \frac{4\pi}{3}.\]
\[\mathbf{4.}\ \]
\[\text{ctg}\frac{\pi}{3};\ \text{ctg}\frac{7\pi}{8};\text{\ ctg}\frac{5\pi}{7};\text{\ ctg}\ 2.\]
\[y = ctg\ x\ убывает\ на\ (0;\ \pi):\]
\[0 < \frac{\pi}{3} < 2 < \frac{5\pi}{7} < \frac{7\pi}{8} < \pi.\]
\[Ответ:\ \ \]
\[\text{ctg}\frac{7\pi}{8},\ \ \ ctg\frac{5\pi}{7},\ \ \ ctg\ 2,\ \ \ ctg\frac{\pi}{3}.\]