\[\boxed{\mathbf{981}\mathbf{.}}\]
\[1)\ y = \left( x^{2} - 1 \right) \bullet \sqrt{x + 1};\]
\[\textbf{а)}\ D(x) = ( - 1;\ + \infty);\]
\[= \frac{4x \bullet (x + 1) + x^{2} - 1}{2\sqrt{x + 1}} =\]
\[= \frac{4x^{2} + 4x + x^{2} - 1}{2\sqrt{x + 1}} =\]
\[= \frac{5x^{2} + 4x - 1}{2\sqrt{x + 1}}.\]
\[\textbf{в)}\ Стационарные\ точки:\]
\[5x^{2} + 4x - 1 = 0\]
\[D = 4^{2} + 4 \bullet 5 = 16 + 20 = 36\]
\[x_{1} = \frac{- 4 - 6}{2 \bullet 5} = - 1\ \ и\ \ \]
\[x_{2} = \frac{- 4 + 6}{2 \bullet 5} = \frac{2}{10} = 0,2.\]
\[\textbf{г)}\ f( - 1) =\]
\[= \left( ( - 1)^{2} - 1 \right) \bullet \sqrt{- 1 + 1} =\]
\[= (1 - 1) \bullet \sqrt{0} = 0;\]
\[f(0,2) = \left( {0,2}^{2} - 1 \right) \bullet \sqrt{0,2 + 1} =\]
\[= (0,04 - 1) \bullet \sqrt{1,2} \approx - 1.\]
\[\textbf{д)}\ Возрастает\ на\ (0,2;\ + \infty)\ и\ \]
\[убывает\ на\ ( - 1;\ 0,2);\]
\[x = 0,2 - точка\ минимума.\]
\[\textbf{е)}\ \]
\[x\] | \[- 1\] | \[- 1 < x < 0,2\] | \[0,2\] | \[0,2 < x < + \infty\] |
---|---|---|---|---|
\[f^{'}(x)\] | \[0\] | \[-\] | \[0\] | \[+\] |
\[f(x)\] | \[0\] | \[\searrow\] | \[- 1\] | \[\nearrow\] |
\[2)\ y = |x| \bullet \sqrt[3]{1 + 3x};\]
\[\textbf{а)}\ D(x) = ( - \infty;\ + \infty);\]
\[= \frac{\pm 3 \bullet (1 + 3x) \pm x}{3\sqrt[3]{(1 + 3x)^{2}}} =\]
\[= \frac{\pm 3 \pm 9x \pm x}{3\sqrt[3]{(1 + 3x)^{2}}} = \frac{\pm 10x \pm 3}{\sqrt[3]{(1 + 3x)^{2}}}.\]
\[\textbf{в)}\ Стационарные\ точки:\]
\[\pm 10x \pm 3 = 0\ \]
\[x = - 0,3.\]
\[\textbf{г)}\ f( - 0,3) = | - 0,3| \bullet \sqrt[3]{1 - 0,9} =\]
\[= 0,3 \bullet \sqrt[3]{0,1} \approx 0,1;\]
\[f(0) = |0| \bullet \sqrt[3]{1 + 3 \bullet 0} = 0.\]
\[\textbf{д)}\ Возрастает\ \]
\[на\ ( - \infty;\ - 0,3) \cup (0;\ + \infty)\ и\ \]
\[убывает\ на\ ( - 0,3;\ 0);\]
\[x = 0 - точка\ минимума;\text{\ \ }\]
\[x = - 0,3 - точка\ максимума.\]
\[\textbf{е)}\]
\[x\] | \[x < - 0,3\] | \[- 0,3\] | \[- 0,3 < x < 0\] | \[0\] | \[x > 0\] |
---|---|---|---|---|---|
\[f^{'}(x)\] | \[+\] | \[0\] | \[-\] | \[0\] | \[+\] |
\[f(x)\] | \[\nearrow\] | \[0,1\] | \[\searrow\] | \[0\] | \[\nearrow\] |
\[3)\ y = x^{2} \bullet e^{- x}\]
\[\textbf{а)}\ D(x) = ( - \infty;\ + \infty);\]
\[\textbf{б)}\ y^{'}(x) =\]
\[= \left( x^{2} \right)^{'} \bullet e^{- x} + x^{2} \bullet \left( e^{- x} \right)^{'};\]
\[y^{'}(x) = 2x \bullet e^{- x} - x^{2} \bullet e^{- x} =\]
\[= e^{- x} \bullet \left( 2x - x^{2} \right).\]
\[\textbf{в)}\ Стационарные\ точки:\]
\[2x - x^{2} = 0\]
\[x \bullet (2 - x) = 0\]
\[x_{1} = 0\ и\ x_{2} = 2.\]
\[\textbf{г)}\ f(0) = 0^{2} \bullet e^{- 0} = 0;\]
\[f(2) = 2^{2} \bullet e^{- 2} = \frac{4}{e^{2}}.\]
\[\textbf{д)}\ Уравнение\ горизонтальной\ \]
\[асимптоты:\]
\[y = \lim_{x \rightarrow \infty}\left( x^{2} \bullet e^{- x} \right) = 0.\]
\[\textbf{д)}\ Возрастает\ на\ (0;\ 2)\ и\ \]
\[убывает\ на\ ( - \infty;\ 0) \cup (2;\ + \infty);\]
\[x = 0 - точка\ минимума;\ \]
\[x = 2 - точка\ максимума.\]
\[\textbf{е)}\ \]
\[x\] | \[x < 0\] | \[0\] | \[0 < x < 2\] | \[2\] | \[x > 2\] |
---|---|---|---|---|---|
\[f^{'}(x)\] | \[-\] | \[0\] | \[+\] | \[0\] | \[-\] |
\[f(x)\] | \[\searrow\] | \[0\] | \[\nearrow\] | \[4/e^{2}\] | \[\searrow\] |
\[4)\ y = x^{3} \bullet e^{- x}\]
\[\textbf{а)}\ D(x) = ( - \infty;\ + \infty);\]
\[\textbf{б)}\ y^{'}(x) =\]
\[= \left( x^{3} \right)^{'} \bullet e^{- x} + x^{3} \bullet \left( e^{- x} \right)^{'};\]
\[y^{'}(x) = 3x^{2} \bullet e^{- x} - x^{3} \bullet e^{- x} =\]
\[= e^{- x} \bullet \left( 3x^{2} - x^{3} \right);\]
\[\textbf{в)}\ Стационарные\ точки:\]
\[3x^{2} - x^{3} = 0\]
\[x^{2} \bullet (3 - x) = 0\]
\[x_{1} = 0\ и\ x_{2} = 3.\]
\[\textbf{г)}\ f(0) = 0^{3} \bullet e^{- 0} = 0;\]
\[f(3) = 3^{3} \bullet e^{- 3} = \frac{27}{e^{3}}.\]
\[\textbf{д)}\ Уравнение\ горизонтальной\ \]
\[асимптоты:\]
\[y = \lim_{x \rightarrow \infty}\left( x^{3} \bullet e^{- x} \right) = 0.\]
\[\textbf{д)}\ Возрастает\ \]
\[на\ ( - \infty;\ 0) \cup (0;\ 3)\ и\ убывает\ \]
\[на\ (3;\ + \infty);\]
\[x = 3 - точка\ максимума.\]
\[\textbf{е)}\ \]
\[x\] | \[x < 0\] | \[0\] | \[0 < x < 3\] | \[3\] | \[x > 3\] |
---|---|---|---|---|---|
\[f^{'}(x)\] | \[+\] | \[0\] | \[+\] | \[0\] | \[-\] |
\[f(x)\] | \[\nearrow\] | \[0\] | \[\nearrow\] | \[27/e^{3}\] | \[\searrow\] |