\[\boxed{\mathbf{940}\mathbf{.}}\]
\[x\ и\ y - данные\ числа:\]
\[x + y = 50 \rightarrow y = 50 - x.\]
\[f(x) = x^{3} + y^{3} =\]
\[= x^{3} + (50 - x)^{3}.\]
\[f^{'}(x) = \left( x^{3} \right)^{'} + {(50 - x)^{3}}^{'};\]
\[f^{'}(x) = 3x^{2} - 3(50 - x)^{2} =\]
\[= 3 \bullet \left( x^{2} - (50 - x)^{2} \right).\]
\[Промежуток\ возрастания:\]
\[x^{2} - (50 - x)^{2} > 0\]
\[x^{2} - 2500 + 100x - x^{2} > 0\]
\[100x > 2500\]
\[x > 25.\]
\[x = 25 - точка\ минимума;\]
\[y = 50 - 25 = 25.\]
\[Ответ:\ \ 25 + 25.\]