\[\boxed{\mathbf{941}\mathbf{.}}\]
\[\text{x\ }и\ y - данные\ \]
\[положительные\ числа:\]
\[x \bullet y = 625 \rightarrow \ y = \frac{625}{x}.\]
\[f(x) = x^{2} + y^{2} = x^{2} + \frac{625^{2}}{x^{2}}.\]
\[f^{'}(x) = \left( x^{2} \right)^{'} + 625^{2} \bullet \left( x^{- 2} \right)^{'};\]
\[f^{'}(x) = 2x + 625^{2} \bullet ( - 2) \bullet x^{- 3} =\]
\[= 2 \bullet \left( x - \frac{625^{2}}{x^{3}} \right).\]
\[Промежуток\ возрастания:\]
\[x - \frac{625^{2}}{x^{3}} > 0\]
\[x^{5} - 625^{2} \bullet x > 0\]
\[x \bullet \left( x^{4} - 625^{2} \right) > 0\]
\[x \bullet \left( x^{2} - 625 \right) \bullet \left( x^{2} + 625 \right) > 0\]
\[(x + 25) \bullet x \bullet (x - 25) > 0\]
\[- 25 < x < 0\ или\ x > 25.\]
\[x = 25 - точка\ минимума;\]
\[y = \frac{625}{25} = 25.\]
\[Ответ:\ \ 25 \bullet 25.\]