Решебник по алгебре и начала математического анализа 11 класс Алимов Задание 939

Авторы:
Год:2020-2021-2022-2023
Тип:учебник
Серия:Алгебра и начала математического анализа, геометрия

Задание 939

\[\boxed{\mathbf{939}\mathbf{.}}\]

\[1)\ f(x) = x^{2} + \frac{16}{x^{2}};\ \ \ \ (0;\ + \infty)\]

\[f^{'}(x) = \left( x^{2} \right)^{'} + 16 \bullet \left( x^{- 2} \right)^{'};\]

\[f^{'}(x) = 2x + 16 \bullet ( - 2) \bullet x^{- 3} =\]

\[= 2x - \frac{32}{x^{3}}.\]

\[Промежуток\ возрастания:\]

\[2x - \frac{32}{x^{3}} > 0\]

\[2x^{5} - 32x > 0\]

\[2x \bullet \left( x^{4} - 16 \right) > 0\]

\[2x \bullet \left( x^{2} - 4 \right) \bullet \left( x^{2} + 4 \right) > 0\]

\[(x + 2) \bullet 2x \bullet (x - 2) > 0\]

\[- 2 < x < 0\ или\ x > 2.\]

\[y( \pm 2) = ( \pm 2)^{2} + \frac{16}{( \pm 2)^{2}} =\]

\[= 4 + \frac{16}{4} = 4 + 4 = 8.\]

\[Ответ:\ \ y_{\min} = 8;\ \ \]

\[y_{\max} - не\ существует.\]

\[2)\ f(x) = \frac{2}{x} - x^{2};\ ( - \infty;\ 0)\]

\[f^{'}(x) = 2 \bullet \left( \frac{1}{x} \right)^{'} - \left( x^{2} \right)^{'} =\]

\[= - \frac{2}{x^{2}} - 2x.\]

\[Промежуток\ возрастания:\]

\[- \frac{2}{x^{2}} - 2x > 0\]

\[- 2 \bullet \left( \frac{1}{x^{2}} + x \right) > 0\]

\[\frac{1}{x^{2}} + x < 0\]

\[1 + x^{3} < 0\]

\[x^{3} < - 1\ \]

\[x < - 1.\]

\[y( - 1) = \frac{2}{- 1} - ( - 1)^{2} =\]

\[= - 2 - 1 = - 3.\]

\[Ответ:\ \ y_{\max} = - 3;\ \ \]

\[y_{\min} - не\ существует.\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам