\[\boxed{\mathbf{939}\mathbf{.}}\]
\[1)\ f(x) = x^{2} + \frac{16}{x^{2}};\ \ \ \ (0;\ + \infty)\]
\[f^{'}(x) = \left( x^{2} \right)^{'} + 16 \bullet \left( x^{- 2} \right)^{'};\]
\[f^{'}(x) = 2x + 16 \bullet ( - 2) \bullet x^{- 3} =\]
\[= 2x - \frac{32}{x^{3}}.\]
\[Промежуток\ возрастания:\]
\[2x - \frac{32}{x^{3}} > 0\]
\[2x^{5} - 32x > 0\]
\[2x \bullet \left( x^{4} - 16 \right) > 0\]
\[2x \bullet \left( x^{2} - 4 \right) \bullet \left( x^{2} + 4 \right) > 0\]
\[(x + 2) \bullet 2x \bullet (x - 2) > 0\]
\[- 2 < x < 0\ или\ x > 2.\]
\[y( \pm 2) = ( \pm 2)^{2} + \frac{16}{( \pm 2)^{2}} =\]
\[= 4 + \frac{16}{4} = 4 + 4 = 8.\]
\[Ответ:\ \ y_{\min} = 8;\ \ \]
\[y_{\max} - не\ существует.\]
\[2)\ f(x) = \frac{2}{x} - x^{2};\ ( - \infty;\ 0)\]
\[f^{'}(x) = 2 \bullet \left( \frac{1}{x} \right)^{'} - \left( x^{2} \right)^{'} =\]
\[= - \frac{2}{x^{2}} - 2x.\]
\[Промежуток\ возрастания:\]
\[- \frac{2}{x^{2}} - 2x > 0\]
\[- 2 \bullet \left( \frac{1}{x^{2}} + x \right) > 0\]
\[\frac{1}{x^{2}} + x < 0\]
\[1 + x^{3} < 0\]
\[x^{3} < - 1\ \]
\[x < - 1.\]
\[y( - 1) = \frac{2}{- 1} - ( - 1)^{2} =\]
\[= - 2 - 1 = - 3.\]
\[Ответ:\ \ y_{\max} = - 3;\ \ \]
\[y_{\min} - не\ существует.\]