\[\boxed{\mathbf{938}\mathbf{.}}\]
\[1)\ f(x) = x^{4} - 8x^{2} + 5;\ \ \lbrack - 3;\ 2\rbrack\]
\[f^{'}(x) = \left( x^{4} \right)^{'} - 8\left( x^{2} \right)^{'} + (5)^{'} =\]
\[= 4x^{3} - 8 \bullet 2x + 0 = 4x^{3} - 16x.\]
\[Точки\ экстремума:\]
\[4x^{3} - 16x = 0\]
\[4x \bullet \left( x^{2} - 4 \right) = 0\]
\[(x + 2) \bullet 4x \bullet (x - 2) = 0\]
\[x_{1} = - 2;\ \ \ x_{2} = 0;\text{\ \ }x_{3} = 2.\]
\[f( - 3) =\]
\[= ( - 3)^{4} - 8 \bullet ( - 3)^{2} + 5 =\]
\[= 81 - 72 + 5 = 14;\]
\[f( \pm 2) =\]
\[= ( \pm 2)^{4} - 8 \bullet ( \pm 2)^{2} + 5 =\]
\[= 16 - 32 + 5 = - 11;\]
\[f(0) = 0^{4} - 8 \bullet 0^{2} + 5 = 5.\]
\[Ответ:\ \ y_{\min} = - 11;\ \ y_{\max} = 14.\]
\[2)\ f(x) = x + \frac{1}{x};\ \ \lbrack - 2;\ - 0,5\rbrack\]
\[f^{'}(x) = (x)^{'} + \left( \frac{1}{x} \right)^{'} = 1 - \frac{1}{x^{2}}.\]
\[Точки\ экстремума:\]
\[1 - \frac{1}{x^{2}} = 0\]
\[x^{2} - 1 = 0\]
\[x^{2} = 1\]
\[x = \pm 1.\]
\[y( - 2) = - 2 + \frac{1}{- 2} = - 2 - 0,5 =\]
\[= - 2,5;\]
\[y( - 1) = - 1 + \frac{1}{- 1} = - 1 - 1 =\]
\[= - 2;\]
\[y( - 0,5) = - 0,5 + \frac{1}{- 0,5} =\]
\[= - 0,5 - 2 = - 2,5.\]
\[Ответ:\ \ y_{\min} = - 2,5;\ \ \]
\[y_{\max} = - 2.\]
\[3)\ f(x) = \sin x + \cos x;\ \left\lbrack \pi;\ \frac{3\pi}{2} \right\rbrack\]
\[f^{'}(x) = \left( \sin x \right)^{'} + \left( \cos x \right)^{'} =\]
\[= \cos x - \sin x.\]
\[Точки\ экстремума:\]
\[\cos x - \sin x = 0\ \ \ \ \ |\ :\cos x\]
\[1 - tg\ x = 0\]
\[tg\ x = 1\]
\[x = arctg\ 1 + \pi n\]
\[x = \frac{\pi}{4} + \pi n.\]
\[y(\pi) = \sin\pi + \cos\pi = 0 - 1 =\]
\[= - 1;\]
\[y\left( \frac{5\pi}{4} \right) = \sin\frac{5\pi}{4} + \cos\frac{5\pi}{4} =\]
\[= - \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2} = - \sqrt{2};\]
\[y\left( \frac{3\pi}{2} \right) = \sin\frac{3\pi}{2} + \cos\frac{3\pi}{2} =\]
\[= - 1 + 0 = - 1.\]
\[Ответ:\ \ y_{\min} = - \sqrt{2};\ \ y_{\max} = - 1.\]