\[\boxed{\mathbf{937}\mathbf{.}}\]
\[f(x) = 2x^{3} + 3x^{2} - 36x\]
\[f^{'}(x) = 2\left( x^{3} \right)^{'} + 3\left( x^{2} \right)^{'} - (36x)^{'}\]
\[f^{'}(x) = 2 \bullet 3x^{2} + 3 \bullet 2x - 36 =\]
\[= 6x^{2} + 6x - 36.\]
\[Точки\ экстремума:\]
\[6x^{2} + 6x - 36 = 0\]
\[x^{2} + x - 6 = 0\]
\[D = 1^{2} + 4 \bullet 6 = 1 + 24 = 25\]
\[x_{1} = \frac{- 1 - 5}{2} = - 3;\text{\ \ }\]
\[x_{2} = \frac{- 1 + 5}{2} = 2.\]
\[1)\ \lbrack - 4;\ 3\rbrack:\]
\[y(2) = 2 \bullet 2^{3} + 3 \bullet 2^{2} - 36 \bullet 2 =\]
\[= 16 + 12 - 72 = - 44;\]
\[y(3) = 3 \bullet 3^{3} + 3 \bullet 3^{2} - 36 \bullet 3 =\]
\[= 81 + 27 - 108 = 0.\]
\[\ y_{\min} = - 44;\ \ y_{\max} = 81.\]
\[2)\ \lbrack - 2;\ 1\rbrack:\]
\[y(1) = 2 \bullet 1^{3} + 3 \bullet 1^{2} - 36 \bullet 1 =\]
\[= 2 + 3 - 36 = - 31.\]
\[y_{\min} = - 31;\ \ y_{\max} = 68.\]