\[\boxed{\mathbf{934}\mathbf{.}}\]
\[1)\ x^{4} - 4x^{3} + 20 = 0\]
\[\textbf{а)}\ D(x) = ( - \infty;\ + \infty);\]
\[\textbf{б)}\ y^{'}(x) =\]
\[= \left( x^{4} \right)^{'} - 4 \bullet \left( x^{3} \right)^{'} + (20)^{'};\]
\[y^{'}(x) = 4x^{3} - 4 \bullet 3x^{2} + 0 =\]
\[= 4x^{3} - 12x^{2};\]
\[\textbf{в)}\ Стационарные\ точки:\]
\[4x^{3} - 12x^{2} = 0\]
\[4x^{2} \bullet (x - 3) = 0\]
\[x_{1} = 0\ и\ x_{2} = 3.\]
\[\textbf{г)}\ f(0) = 0^{4} - 4 \bullet 0^{3} + 20 = 20;\]
\[f(3) = 3^{4} - 4 \bullet 3^{3} + 20 =\]
\[= 81 - 108 + 20 = - 7;\]
\[\textbf{д)}\ Возрастает\ на\ (3;\ + \infty)\ и\ \]
\[убывает\ на\ ( - \infty;\ 0) \cup (0;\ 3);\]
\[x = 3 - точка\ минимума.\]
\[\textbf{е)}\ \]
\[x\] | \[x < 0\] | \[0\] | \[0 < x < 3\] | \[3\] | \[x > 3\] |
---|---|---|---|---|---|
\[f^{'}(x)\] | \[-\] | \[0\] | \[-\] | \[0\] | \[+\] |
\[f(x)\] | \[\searrow\] | \[20\] | \[\searrow\] | \[- 7\] | \[\nearrow\] |
\[Ответ:\ \ 2\ решения.\]
\[2)\ 8x^{3} - 3x^{4} - 7 = 0\]
\[\textbf{а)}\ D(x) = ( - \infty;\ + \infty);\]
\[\textbf{б)}\ y^{'}(x) =\]
\[= 8 \bullet \left( x^{3} \right)^{'} - 3 \bullet \left( x^{4} \right)^{'} - (7)^{'};\]
\[y^{'}(x) = 8 \bullet 3x^{2} - 3 \bullet 4x^{3} - 0 =\]
\[= 24x^{2} - 12x^{3};\]
\[\textbf{в)}\ Стационарные\ точки:\]
\[24x^{2} - 12x^{3} = 0\]
\[12x^{2} \bullet (2 - x) = 0\]
\[x_{1} = 0\ и\ x_{2} = 2.\]
\[\textbf{г)}\ f(0) = 8 \bullet 0^{3} - 3 \bullet 0^{4} - 7 =\]
\[= - 7;\]
\[f(2) = 8 \bullet 2^{3} - 3 \bullet 2^{4} - 7 =\]
\[= 64 - 48 - 7 = 9;\]
\[\textbf{д)}\ Возрастает\ \]
\[на\ ( - \infty;\ 0) \cup (0;\ 2)\ и\ убывает\ \]
\[на\ (2;\ + \infty);\]
\[x = 2 - точка\ максимума.\]
\[\textbf{е)}\ \]
\[x\] | \[x < 0\] | \[0\] | \[0 < x < 2\] | \[2\] | \[x > 2\] |
---|---|---|---|---|---|
\[f^{'}(x)\] | \[+\] | \[0\] | \[+\] | \[0\] | \[-\] |
\[f(x)\] | \[\nearrow\] | \[- 7\] | \[\nearrow\] | \[9\] | \[\searrow\] |
\(Ответ:\ \ 2\ решения.\)