\[\boxed{\mathbf{935}\mathbf{.}}\]
\[y = \frac{x^{3} - 4}{(x - 1)^{3}};\]
\[1)\ D(x) = ( - \infty;\ 1) \cup (1;\ + \infty);\]
\[3)\ Стационарные\ точки:\]
\[12 - 3x^{2} = 0\]
\[4 - x^{2} = 0\]
\[(2 + x)(2 - x) = 0\]
\[x_{1} = - 2\ и\ x_{2} = 2.\]
\[4)\ f( - 2) = \frac{( - 2)^{3} - 4}{( - 2 - 1)^{3}} =\]
\[= \frac{- 8 - 4}{( - 3)^{3}} = \frac{12}{27} = \frac{4}{9};\]
\[f(2) = \frac{2^{3} - 4}{(2 - 1)^{3}} = \frac{8 - 4}{1^{3}} = 4;\]
\[5)\ Возрастает\ на\ ( - 2;\ 1) \cup (1;\ 2)\ \]
\[и\ убывает\ \]
\[на\ ( - \infty;\ - 2) \cup (2;\ + \infty);\]
\[x = - 2 - точка\ минимума;\text{\ \ }\]
\[x = 2 - точка\ максимума.\]
\[6)\ y = \lim_{x \rightarrow \infty}\frac{x^{3} - 4}{(x - 1)^{3}} =\]
\[= \lim_{x \rightarrow \infty}\frac{x^{3} - 4}{x^{3} - 3x^{2} + 3x - 1} =\]
\[= \lim_{x \rightarrow \infty}\frac{1 - \frac{4}{x^{3}}}{1 - \frac{3}{x} + \frac{3}{x^{2}} - \frac{1}{x^{3}}}.\]
\[y = \frac{1 - 0}{1 - 0 + 0 - 0} = \frac{1}{1} = 1.\]
\[6)\ \]
\[x\] | \[x < - 2\] | \[- 2\] | \[- 2 < x < 1\] | \[1 < x < 2\] | \[2\] | \[x > 2\] |
---|---|---|---|---|---|---|
\[f^{'}(x)\] | \[-\] | \[0\] | \[+\] | \[+\] | \[0\] | \[-\] |
\[f(x)\] | \[\searrow\] | \[\frac{4}{9}\] | \[\nearrow\] | \[\nearrow\] | \[4\] | \[\searrow\] |
\[y = \frac{x^{3} - 4}{(x - 1)^{3}} = C:\]
\[\ C < \frac{4}{9};\ \ \ C > 4 \rightarrow \ одно\ \]
\[решение;\]
\[C = 1;\ C = 4;\ \]
\[C = \frac{4}{9} \rightarrow два\ решения;\]
\[\ \frac{4}{9} \leq C < 1;\ \]
\[1 < C < 4 \rightarrow три\ решения.\]