\[\boxed{\mathbf{933}\mathbf{.}}\]
\[1)\ y = \frac{x^{2}}{x - 2}\]
\[\textbf{а)}\ D(x) = ( - \infty;\ 2) \cup (2;\ + \infty);\]
\[\textbf{б)}\ y^{'}(x) =\]
\[= \frac{\left( x^{2} \right)^{'} \bullet (x - 2) - x^{2} \bullet (x - 2)'}{(x - 2)^{2}};\]
\[y^{'}(x) = \frac{2x \bullet (x - 2) - x^{2} \bullet 1}{(x - 2)^{2}};\]
\[y^{'}(x) = \frac{2x^{2} - 4x - x^{2}}{(x - 2)^{2}} =\]
\[= \frac{x^{2} - 4x}{(x - 2)^{2}}.\]
\[\textbf{в)}\ Стационарные\ точки:\]
\[x^{2} - 4x = 0\]
\[x \bullet (x - 4) = 0\]
\[x_{1} = 0\ и\ x_{2} = 4.\]
\[\textbf{г)}\ f(0) = \frac{0^{2}}{0 - 2} = 0;\]
\[f(4) = \frac{4^{2}}{4 - 2} = \frac{16}{2} = 8.\]
\[\textbf{д)}\ Возрастает\ \]
\[на\ ( - \infty;\ 0) \cup (4;\ + \infty)\ и\ убывает\ \]
\[на\ (0;\ 2) \cup (2;\ 4);\]
\[x = 4 - точка\ минимума;\text{\ \ }\]
\[x = 0 - точка\ максимума.\]
\[\textbf{е)}\ \]
\[x\] | \[x < 0\] | \[0\] | \[0 < x < 2\] | \[2 < x < 4\] | \[4\] | \[x > 4\] |
---|---|---|---|---|---|---|
\[f^{'}(x)\] | \[+\] | \[0\] | \[-\] | \[-\] | \[0\] | \[+\] |
\[f(x)\] | \[\nearrow\] | \[0\] | \[\searrow\] | \[\searrow\] | \[8\] | \[\nearrow\] |
\[2)\ y = \frac{- x^{2} + 3x - 1}{x} =\]
\[= - x + 3 - \frac{1}{x}\]
\[\textbf{а)}\ D(x) = ( - \infty;\ 0) \cup (0;\ + \infty);\]
\[\textbf{б)}\ y^{'}(x) = - (x - 3)^{'} - \left( \frac{1}{x} \right)^{'} =\]
\[= - 1 + \frac{1}{x^{2}};\]
\[\textbf{в)}\ Стационарные\ точки:\]
\[- 1 + \frac{1}{x^{2}} = 0\]
\[- x^{2} + 1 = 0\]
\[(1 + x)(1 - x) = 0\]
\[x_{1} = - 1\ и\ x_{2} = 1.\]
\[\textbf{г)}\ f( - 1) = 1 + 3 + \frac{1}{1} = 5;\]
\[f(1) = - 1 + 3 - \frac{1}{1} = 1;\]
\[\textbf{д)}\ Возрастает\ \]
\[на\ ( - 1;\ 0) \cup (0;\ 1)\ и\ убывает\ \]
\[на\ ( - \infty;\ - 1) \cup (1;\ + \infty);\]
\[x = - 1 - точка\ минимума;\text{\ \ }\]
\[x = 1 - точка\ максимума.\]
\[\textbf{е)}\ \]
\[x\] | \[x < - 1\] | \[- 1\] | \[- 1 < x < 0\] | \[0 < x < 1\] | \[1\] | \[x > 1\] |
---|---|---|---|---|---|---|
\[f^{'}(x)\] | \[-\] | \[0\] | \[+\] | \[+\] | \[0\] | \[-\] |
\[f(x)\] | \[\searrow\] | \[5\] | \[\nearrow\] | \[\nearrow\] | \[1\] | \[\searrow\] |
\[3)\ y = \frac{4 + x - 2x^{2}}{(x - 2)^{2}}\]
\[\textbf{а)}\ D(x) = ( - \infty;\ 2) \cup (2;\ + \infty);\]
\[= \frac{7x^{2} - 24x + 20}{(x - 4)^{4}}.\]
\[\textbf{в)}\ Стационарные\ точки:\]
\[7x^{2} - 24x + 20 = 0\]
\[D = 24^{2} - 4 \bullet 7 \bullet 20 =\]
\[= 576 - 560 = 16\]
\[x_{1} = \frac{24 - 4}{2 \bullet 7} = \frac{20}{14} = \frac{10}{7};\ \text{\ \ }\]
\[x_{2} = \frac{24 + 4}{2 \bullet 7} = \frac{28}{14} = 2.\]
\[\left( x - 1\frac{3}{7} \right)(x - 2) = 0.\]
\[\textbf{г)}\ f\left( \frac{10}{7} \right) = \frac{4 + \frac{10}{7} - 2 \bullet \left( \frac{10}{7} \right)^{2}}{\left( \frac{10}{7} - 2 \right)^{2}} =\]
\[= \frac{\frac{38}{7} - \frac{200}{49}}{\left( - \frac{4}{7} \right)^{2}} = \frac{66}{49}\ :\frac{16}{49} = \frac{33}{8} =\]
\[= 4\frac{1}{8}.\]
\[\textbf{д)}\ Возрастает\ \]
\[на\left( - \infty;\ 1\frac{3}{7} \right) \cup (2;\ + \infty)\ и\ \]
\[убывает\ на\ \left( 1\frac{3}{7};\ 2 \right);\]
\[x = 1\frac{3}{7} - точка\ максимума.\]
\[\textbf{е)}\ \]
\[x\] | \[x < 1\frac{3}{7}\] | \[1\frac{3}{7}\] | \[1\frac{3}{7} < x < 2\] | \[x > 2\] |
---|---|---|---|---|
\[f^{'}(x)\] | \[+\] | \[0\] | \[-\] | \[+\] |
\[f(x)\] | \[\nearrow\] | \[4\frac{1}{8}\] | \[\searrow\] | \[\nearrow\] |