\[\boxed{\mathbf{932}\mathbf{.}}\]
\[1)\ y = x \bullet e^{- x};\]
\[\textbf{а)}\ D(x) = ( - \infty;\ + \infty);\]
\[\textbf{б)}\ y^{'}(x) = (x)^{'} \bullet e^{- x} + x \bullet \left( e^{- x} \right)^{'};\]
\[y^{'}(x) = 1 \bullet e^{- x} - x \bullet e^{- x} =\]
\[= e^{- x} \bullet (1 - x);\]
\[\textbf{в)}\ Стационарные\ точки:\]
\[1 - x = 0\ \]
\[x = 1.\]
\[\textbf{г)}\ f(1) = 1 \bullet e^{- 1} = \frac{1}{e};\]
\[\textbf{д)}\ Возрастает\ на\ ( - \infty;\ 1)\ и\ \]
\[убывает\ на\ (1;\ + \infty);\]
\[x = 1 - точка\ максимума.\]
\[\textbf{е)}\ Уравнение\ горизонтальной\ \]
\[асимптоты:\]
\[y = \lim_{x \rightarrow \infty}\left( x \bullet e^{- x} \right) =\]
\[= \lim_{x \rightarrow \infty}\left( \frac{x}{e^{x}} \right) = 0.\]
\[\textbf{ж)}\ \]
\[x\] | \[x < 1\] | \[1\] | \[x > 1\] |
---|---|---|---|
\[f^{'}(x)\] | \[+\] | \[0\] | \[-\] |
\[f(x)\] | \[\nearrow\] | \[1/e\] | \[\searrow\] |
\[2)\ y = x \bullet e^{x}\]
\[\textbf{а)}\ D(x) = ( - \infty;\ + \infty);\]
\[\textbf{б)}\ y^{'}(x) = (x)^{'} \bullet e^{x} + x \bullet \left( e^{x} \right)^{'};\]
\[y^{'}(x) = 1 \bullet e^{x} + x \bullet e^{x} =\]
\[= e^{x} \bullet (1 + x);\]
\[\textbf{в)}\ Стационарные\ точки:\]
\[1 + x = 0\ \]
\[x = - 1.\]
\[\textbf{г)}\ f( - 1) = - 1 \bullet e^{- 1} = - \frac{1}{e};\]
\[\textbf{д)}\ Возрастает\ на\ (1;\ + \infty)\ и\ \]
\[убывает\ на\ ( - \infty;\ 1);\]
\[x = - 1 - точка\ минимума.\]
\[\textbf{е)}\ Уравнение\ горизонтальной\ \]
\[асимптоты:\]
\[y = \lim_{x \rightarrow - \infty}\left( x \bullet e^{x} \right) = 0 \bullet 0 = 0.\]
\[\textbf{ж)}\ \]
\[x\] | \[x < 1\] | \[1\] | \[x > 1\] |
---|---|---|---|
\[f^{'}(x)\] | \[-\] | \[0\] | \[+\] |
\[f(x)\] | \[\searrow\] | \[- 1/e\] | \[\nearrow\] |
\[3)\ y = e^{x^{2}}\]
\[\textbf{а)}\ D(x) = ( - \infty;\ + \infty);\]
\[\textbf{б)}\ y^{'}(x) = \left( x^{2} \right)^{'} \bullet \left( e^{u} \right)^{'} =\]
\[= 2x \bullet e^{u} = 2x \bullet e^{x^{2}};\]
\[\textbf{в)}\ Стационарные\ точки:\]
\[2x = 0\]
\[x = 0.\]
\[\textbf{г)}\ f(0) = e^{0^{2}} = e^{0} = 1;\]
\[f(1) = e^{1^{2}} = e^{1} = e.\]
\[\textbf{д)}\ Возрастает\ на\ (0;\ + \infty)\ и\ \]
\[убывает\ на\ ( - \infty;\ 0);\]
\[x = 0 - точка\ минимума.\]
\[\textbf{е)}\ \]
\[x\] | \[x < 0\] | \[0\] | \[x > 0\] |
---|---|---|---|
\[f^{'}(x)\] | \[-\] | \[0\] | \[+\] |
\[f(x)\] | \[\searrow\] | \[1\] | \[\nearrow\] |
\[4)\ y = e^{- x^{2}}\]
\[\textbf{а)}\ D(x) = ( - \infty;\ + \infty);\]
\[\textbf{б)}\ y^{'}(x) = \left( - x^{2} \right)^{'} \bullet \left( e^{u} \right)^{'} =\]
\[= - 2x \bullet e^{u} = - 2x \bullet e^{- x^{2}};\]
\[\textbf{в)}\ Стационарные\ точки:\]
\[- 2x = 0\]
\[x = 0.\]
\[\textbf{г)}\ f(0) = e^{- 0^{2}} = e^{0} = 1;\]
\[f( \pm 2) = e^{- ( \pm 2)^{2}} = e^{- 4} = \frac{1}{e^{4}}.\]
\[\textbf{д)}\ Возрастает\ на\ ( - \infty;\ 0)\ и\ \]
\[убывает\ на\ (0;\ + \infty);\]
\[x = 0 - точка\ максимума.\]
\[\textbf{е)}\ Уравнение\ горизонтальной\ \]
\[асимптоты:\]
\[y = \lim_{x \rightarrow \infty}e^{- x^{2}} = \lim_{x \rightarrow \infty}\frac{1}{e^{x^{2}}} = 0.\]
\[\textbf{ж)}\ \]
\[x\] | \[x < 0\] | \[0\] | \[x > 0\] |
---|---|---|---|
\[f^{'}(x)\] | \[+\] | \[0\] | \[-\] |
\[f(x)\] | \[\nearrow\] | \[1\] | \[\searrow\] |