Решебник по алгебре и начала математического анализа 11 класс Алимов Задание 931

Авторы:
Год:2020-2021-2022-2023
Тип:учебник
Серия:Алгебра и начала математического анализа, геометрия

Задание 931

\[\boxed{\mathbf{931}\mathbf{.}}\]

\[1)\ y = 3x + \frac{1}{3x}\]

\[\textbf{а)}\ D(x) = ( - \infty;\ 0) \cup (0;\ + \infty);\]

\[\textbf{б)}\ y^{'}(x) = (3x)^{'} + \frac{1}{3} \bullet \left( \frac{1}{x} \right)^{'} =\]

\[= 3 - \frac{1}{3x^{2}};\]

\[\textbf{в)}\ Стационарные\ точки:\]

\[3 - \frac{1}{3x^{2}} = 0\]

\[9x^{2} - 1 = 0\]

\[(3x + 1)(3x - 1) = 0\]

\[x_{1} = - \frac{1}{3}\ и\ x_{2} = \frac{1}{3}.\]

\[\textbf{г)}\ f\left( - \frac{1}{3} \right) =\]

\[= 3 \bullet \left( - \frac{1}{3} \right) + \frac{1}{3} \bullet ( - 3) =\]

\[= - 1 - 1 = - 2;\]

\[f\left( \frac{1}{3} \right) = 3 \bullet \frac{1}{3} + \frac{1}{3} \bullet 3 = 1 + 1 = 2;\]

\[f( - 2) = 3 \bullet ( - 2) - \frac{1}{3 \bullet 2} =\]

\[= - 6 - \frac{1}{6} = - 6\frac{1}{6};\]

\[f(2) = 3 \bullet 2 + \frac{1}{3 \bullet 2} = 6 + \frac{1}{6} =\]

\[= 6\frac{1}{6}.\]

\[\textbf{д)}\ Возрастает\ \]

\[на\ \left( - \infty;\ - \frac{1}{3} \right) \cup \left( \frac{1}{3};\ + \infty \right)\ и\ \]

\[убывает\ на\ ( - \frac{1}{3};\ 0) \cup \left( 0;\ \frac{1}{3} \right);\]

\[x = - \frac{1}{3} - точка\ минимума;\ \ \]

\[x = \frac{1}{3} - точка\ максимума.\]

\[\textbf{е)}\ \]

\[x\] \[x < - \frac{1}{3}\] \[- \frac{1}{3}\] \[- \frac{1}{3} < x < 0\] \[0 < x < \frac{1}{3}\] \[\frac{1}{3}\] \[x > \frac{1}{3}\]
\[f^{'}(x)\] \[+\] \[0\] \[-\] \[-\] \[0\] \[+\]
\[f(x)\] \[\nearrow\] \[- 2\] \[\searrow\] \[\searrow\] \[2\] \[\nearrow\]

\[2)\ y = \frac{4}{x} - x\]

\[\textbf{а)}\ D(x) = ( - \infty;\ 0) \cup (0;\ + \infty);\]

\[\textbf{б)}\ y^{'}(x) = 4 \bullet \left( \frac{1}{x} \right)^{'} - (x)^{'} =\]

\[= - \frac{4}{x^{2}} - 1;\]

\[\textbf{в)}\ Стационарные\ точки:\]

\[- \frac{4}{x^{2}} - 1 = 0\]

\[- 4 - x^{2} = 0\]

\[x^{2} = - 4 - корней\ нет.\]

\[\textbf{г)}\ \frac{4}{x} - x = 0\]

\[4 - x^{2} = 0\]

\[x^{2} = 4\ \]

\[x = \pm 2.\]

\[\textbf{д)}\ f( - 4) = - \frac{4}{4} + 4 =\]

\[= - 1 + 4 = 3;\]

\[f(4) = \frac{4}{4} - 4 = 1 - 4 = - 3.\]

\[\textbf{е)}\ Убывает\ \]

\[на\ ( - \infty;\ 0) \cup (0;\ + \infty).\]

\[\textbf{ж)}\ \]

\[x\] \[- 2\] \[x < 0\] \[x > 0\] \[2\]
\[f^{'}(x)\] \[-\] \[-\] \[-\] \[-\]
\[f(x)\] \[0\] \[\searrow\] \[\searrow\] \[0\]

\[3)\ y = x - \frac{1}{\sqrt{x}}\]

\[\textbf{а)}\ D(x) = (0;\ + \infty);\]

\[\textbf{б)}\ y^{'}(x) = (x)^{'} - \left( x^{- \frac{1}{2}} \right)^{'} =\]

\[= 1 + \frac{1}{2} \bullet x^{- \frac{3}{2}} = 1 + \frac{1}{2x\sqrt{x}};\]

\[\textbf{в)}\ Стационарные\ точки:\]

\[1 + \frac{1}{2x\sqrt{x}} = 0\]

\[2x\sqrt{x} + 1 = 0\]

\[x\sqrt{x} = - \frac{1}{2} - корней\ нет.\]

\[\textbf{г)}\ x - \frac{1}{\sqrt{x}} = 0\]

\[x\sqrt{x} - 1 = 0\]

\[x\sqrt{x} = 1\]

\[x = 1.\]

\[\textbf{г)}\ f(4) = 4 - \frac{1}{\sqrt{4}} = 4 - \frac{1}{2} = 3,5.\]

\[\textbf{д)}\ Возрастает\ на\ (0;\ + \infty).\]

\[\textbf{е)}\ \]

\[x\] \[x > 0\] \[1\]
\[f^{'}(x)\] \[+\] \[+\]
\[f(x)\] \[\nearrow\] \[0\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам