\[\boxed{\mathbf{914}\mathbf{.}}\]
\[1)\ y = 2x^{2} - 20x + 1\]
\[y^{'}(x) = 2 \bullet \left( x^{2} \right)^{'} - (20x - 1)^{'} =\]
\[= 2 \bullet 2x - 20 = 4x - 20.\]
\[4x - 20 > 0\]
\[4 \bullet (x - 5) > 0\]
\[x > 5.\]
\[Ответ:\ \ x = 5 - точка\ \]
\[минимума.\]
\[2)\ y = 3x^{2} + 36x - 1\]
\[y^{'}(x) = 3 \bullet \left( x^{2} \right)^{'} + (36x - 1)^{'} =\]
\[= 3 \bullet 2x + 36 = 6x + 36.\]
\[6x + 36 > 0\]
\[6 \bullet (x + 6) > 0\ \]
\[x > - 6.\]
\[Ответ:\ \ x = - 6 - точка\ \]
\[минимума.\]
\[3)\ y = \frac{x}{5} + \frac{5}{x}\]
\[y^{'}(x) = \frac{1}{5} \bullet (x)^{'} + 5 \bullet \left( \frac{1}{x} \right)^{'} =\]
\[= \frac{1}{5} - \frac{5}{x^{2}}.\]
\[\frac{1}{5} - \frac{5}{x^{2}} > 0\]
\[x^{2} - 25 > 0\]
\[(x + 5)(x - 5) > 0\]
\[x < - 5\ или\ x > 5.\]
\[Ответ:\ \ x = 5 - точка\ \]
\[минимума;\ \]
\[x = - 5 - точка\ максимума.\]
\[4)\ y = \frac{4}{x} + \frac{x}{16}\]
\[y^{'}(x) = 4 \bullet \left( \frac{1}{x} \right)^{'} + \frac{1}{16} \bullet (x)^{'} =\]
\[= \frac{1}{16} - \frac{4}{x^{2}}.\]
\[\frac{1}{16} - \frac{4}{x^{2}} > 0\]
\[x^{2} - 64 > 0\]
\[(x + 8)(x - 8) > 0\]
\[x < - 8\ или\ x > 8.\]
\[Ответ:\ \ x = 8 - точка\ \]
\[минимума;\ \]
\[x = - 8 - точка\ максимума.\]