\[\boxed{\mathbf{913}\mathbf{.}}\]
\[1)\ y = \frac{2 + x^{2}\ }{x} = \frac{2}{x} + x\]
\[y^{'}(x) = 2 \bullet \left( \frac{1}{x} \right)^{'} + (x)^{'} =\]
\[= - \frac{2}{x^{2}} + 1.\]
\[Стационарные\ точки:\]
\[- \frac{2}{x^{2}} + 1 = 0\]
\[\frac{2}{x^{2}} = 1\]
\[x^{2} = 2\]
\[x = \pm \sqrt{2}.\]
\[Ответ:\ \ x_{1} = - \sqrt{2};\ \ x_{2} = \sqrt{2}.\]
\[2)\ y = \frac{x^{2} + 3}{2x} = \frac{x}{2} + \frac{3}{2x}\]
\[y^{'}(x) = \frac{1}{2} \bullet (x)^{'} + \frac{3}{2} \bullet \left( \frac{1}{x} \right)^{'} =\]
\[= \frac{1}{2} - \frac{3}{2x^{2}}.\]
\[Стационарные\ точки:\]
\[\frac{1}{2} - \frac{3}{2x^{2}} = 0\]
\[x^{2} - 3 = 0\]
\[x^{2} = 3\]
\[x = \pm \sqrt{3}.\]
\[Ответ:\ \ x_{1} = - \sqrt{3};\ \ x_{2} = \sqrt{3}.\]
\[3)\ y = e^{x^{2} - 1}\]
\[Пусть\ u = x^{2} - 1;\ \ y(u) = e^{u}:\]
\[y^{'}(x) = \left( x^{2} - 1 \right)^{'} \bullet \left( e^{u} \right)^{'} =\]
\[= 2x \bullet e^{u} = 2x \bullet e^{x^{2} - 1}.\]
\[Стационарные\ точки:\]
\[2x = 0\ \]
\[x = 0.\]
\[Ответ:\ \ x = 0.\]
\[4)\ y = 2^{x^{2} + x}\]
\[Пусть\ u = x^{2} + x;\ \ y(u) = 2^{u}:\]
\[y^{'}(x) = \left( x^{2} + x \right)^{'} \bullet \left( 2^{u} \right)^{'};\]
\[y^{'}(x) = (2x + 1) \bullet 2^{u} \bullet \ln 2 =\]
\[= (2x + 1) \bullet 2^{x^{2} + x} \bullet \ln 2.\]
\[Стационарные\ точки:\]
\[2x + 1 = 0\]
\[2x = - 1\]
\[x = - 0,5.\]
\[Ответ:\ \ x = - 0,5.\]