\[\boxed{\mathbf{912}\mathbf{.}}\]
\[1)\ y = \frac{x}{2} + \frac{8}{x}\]
\[y^{'}(x) = \frac{1}{2} \bullet (x)^{'} + 8 \bullet \left( \frac{1}{x} \right)^{'} =\]
\[= \frac{1}{2} + 8 \bullet \left( - \frac{1}{x^{2}} \right) = \frac{1}{2} - \frac{8}{x^{2}}.\]
\[Стационарные\ точки:\]
\[\frac{1}{2} - \frac{8}{x^{2}} = 0\]
\[\frac{x^{2}}{2} - 8 = 0\]
\[\frac{x^{2}}{2} = 8\]
\[x^{2} = 16\ \]
\[x = \pm 4.\]
\[Ответ:\ \ x_{1} = - 4;\ \ x_{2} = 4.\]
\[2)\ y = 2x^{3} - 15x^{2} + 36x\]
\[y^{'}(x) =\]
\[= 2 \bullet \left( x^{3} \right)^{'} - 15 \bullet \left( x^{2} \right)^{'} + (36x)^{'};\]
\[y^{'}(x) = 2 \bullet 3x^{2} - 15 \bullet 2x + 36 =\]
\[= 6x^{2} - 30x + 36.\]
\[Стационарные\ точки:\]
\[6x^{2} - 30x + 36 = 0\]
\[x^{2} - 5x + 6 = 0\]
\[D = 5^{2} - 4 \bullet 6 = 25 - 24 = 1\]
\[x_{1} = \frac{5 - 1}{2} = 2\ \ и\ \ \]
\[x_{2} = \frac{5 + 1}{2} = 3.\]
\[Ответ:\ \ x_{1} = 2;\ \ x_{2} = 3.\]
\[3)\ y = e^{2x} - 2e^{x}\]
\[y^{'}(x) = \left( e^{2x} \right)^{'} - 2 \bullet \left( e^{x} \right)^{'} =\]
\[= 2e^{2x} - 2e^{x} = 2 \bullet \left( e^{2x} - e^{x} \right).\]
\[Стационарные\ точки:\]
\[e^{2x} - e^{x} = 0\]
\[e^{2x} = e^{x}\]
\[2x = x\]
\[x = 0.\]
\[Ответ:\ \ x = 0.\]
\[4)\ y = \sin x - \cos x\]
\[y^{'}(x) = \left( \sin x \right)^{'} - \left( \cos x \right)^{'} =\]
\[= \cos x + \sin x.\]
\[Стационарные\ точки:\]
\[\cos x + \sin x = 0\ \ \ \ \ |\ :\cos x\]
\[1 + tg\ x = 0\]
\[tg\ x = - 1\]
\[x = - arctg\ 1 + \pi n\]
\[x = - \frac{\pi}{4} + \pi n;\]
\[Ответ:\ \ x = - \frac{\pi}{4} + \pi n.\]