\[\boxed{\mathbf{871}\mathbf{.}}\]
\[1)\ f(x) = \sin{5x} + \cos(2x - 3)\]
\[f^{'}(x) = \left( \sin{5x} \right)^{'} + \left( \cos(2x - 3) \right)^{'} =\]
\[= 5\cos{5x} - 2\sin(2x - 3)\]
\[2)\ f(x) = e^{2x} - \ln{3x}\]
\[f^{'}(x) = \left( e^{2x} \right)^{'} - \left( \ln{3x} \right)^{'} =\]
\[= 2e^{2x} - \frac{3}{3x} = 2e^{2x} - \frac{1}{x}\]
\[3)\ f(x) = \sin(x - 3) - \ln(1 - 2x)\]
\[f^{'}(x) =\]
\[= \left( \sin(x - 3) \right)^{'} - \left( \ln(1 - 2x) \right)^{'} =\]
\[= \cos(x - 3) - \frac{- 2}{1 - 2x} =\]
\[= \cos(x - 3) + \frac{2}{1 - 2x}\]
\[4)\ f(x) = 6\sin\frac{2x}{3} - e^{1 - 3x}\]
\[f^{'}(x) = 6 \bullet \left( \sin\frac{2x}{3} \right)^{'} - \left( e^{1 - 3x} \right)^{'} =\]
\[= 6 \bullet \frac{2}{3} \bullet \cos\frac{2x}{3} - ( - 3) \bullet e^{1 - 3x} =\]
\[= 4\cos\frac{2x}{3} + 3e^{1 - 3x}.\]