\[\boxed{\mathbf{872}\mathbf{.}}\]
\[1)\ f(x) = x^{2} \bullet \cos x\]
\[f^{'}(x) =\]
\[= \left( x^{2} \right)^{'} \bullet \cos x + x^{2} \bullet \left( \cos x \right)^{'} =\]
\[= 2x \bullet \cos x + x^{2} \bullet \left( - \sin x \right) =\]
\[= x \bullet \left( 2\cos x - x \bullet \sin x \right)\]
\[2)\ f(x) = x^{3} \bullet \ln x\]
\[f^{'}(x) = \left( x^{3} \right)^{'} \bullet \ln x + x^{3} \bullet \left( \ln x \right)^{'} =\]
\[= 3x^{2} \bullet \ln x + x^{3} \bullet \frac{1}{x} =\]
\[= x^{2} \bullet \left( 3\ln x + 1 \right)\]
\[3)\ f(x) = 5x \bullet e^{x}\]
\[f^{'}(x) = (5x)^{'} \bullet e^{x} + 5x \bullet \left( e^{x} \right)^{'} =\]
\[= 5e^{x} + 5x \bullet e^{x} =\]
\[= 5e^{x} \bullet (1 + x)\]
\[4)\ f(x) = x \bullet \sin{2x}\]
\[f^{'}(x) =\]
\[= (x)^{'} \bullet \sin{2x} + x \bullet \left( \sin{2x} \right)^{'} =\]
\[= 1 \bullet \sin{2x} + x \bullet 2\cos{2x} =\]
\[= \sin{2x} + 2x \bullet \cos{2x}\]
\[5)\ f(x) = e^{- x} \bullet \sin x\]
\[f^{'}(x) =\]
\[= \left( e^{- x} \right)^{'} \bullet \sin x + e^{- x} \bullet \left( \sin x \right)^{'} =\]
\[= - e^{- x} \bullet \sin x + e^{- x} \bullet \cos x =\]
\[= e^{x} \bullet \left( \cos x - \sin x \right)\]
\[6)\ f(x) = e^{x} \bullet \cos x\]
\[f^{'}(x) = \left( e^{x} \right)^{'} \bullet \cos x + e^{x} \bullet \left( \cos x \right)^{'} =\]
\[= e^{x} \bullet \cos x + e^{x} \bullet \left( - \sin x \right) =\]
\[= e^{x} \bullet \left( \cos x - \sin x \right).\]