\[\boxed{\mathbf{870}\mathbf{.}}\]
\[1)\ f(x) = e^{x} - \sin x\]
\[f^{'}(x) = \left( e^{x} \right)^{'} - \left( \sin x \right)^{'} =\]
\[= e^{x} - \cos x\]
\[2)\ f(x) = \cos x - \ln x\]
\[f^{'}(x) = \left( \cos x \right)^{'} - \left( \ln x \right)^{'} =\]
\[= - \sin x - \frac{1}{x}\]
\[3)\ f(x) = \sin x - \sqrt[3]{x}\]
\[f^{'}(x) = \left( \sin x \right)^{'} - \left( x^{\frac{1}{3}} \right)^{'} =\]
\[= \cos x - \frac{1}{3} \bullet x^{- \frac{2}{3}} =\]
\[= \cos x - \frac{1}{3\sqrt[3]{x^{2}}}\]
\[4)\ f(x) = 6x^{4} - 9e^{x}\]
\[f^{'}(x) = 6 \bullet \left( x^{4} \right)^{'} - 9 \bullet \left( e^{x} \right)^{'} =\]
\[= 6 \bullet 4x^{3} - 9e^{x} = 24x^{3} - 9e^{x}\]
\[5)\ f(x) = \frac{5}{x} + 4e^{x}\]
\[f^{'}(x) = 5 \bullet \left( \frac{1}{x} \right)^{'} + 4 \bullet \left( e^{x} \right)^{'} =\]
\[= 5 \bullet \left( - \frac{1}{x^{2}} \right) + 4e^{x} = - \frac{5}{x^{2}} + 4e^{x}\]
\[6)\ f(x) = \frac{1}{3x^{3}} + \frac{1}{2}\ln x\]
\[f^{'}(x) = \frac{1}{3} \bullet \left( x^{- 3} \right)^{'} + \frac{1}{2} \bullet \left( \ln x \right)^{'} =\]
\[= \frac{1}{3} \bullet ( - 3) \bullet x^{- 4} + \frac{1}{2} \bullet \frac{1}{x} =\]
\[= - \frac{1}{x^{4}} + \frac{1}{2x}.\]