\[\boxed{\mathbf{869}\mathbf{.}}\]
\[1)\ f(x) = 2x^{4} - x^{3} + 3x + 4\]
\[f^{'}(x) =\]
\[= 2 \bullet \left( x^{4} \right)^{'} - \left( x^{3} \right)^{'} + (3x + 4)^{'} =\]
\[= 2 \bullet 4x^{3} - 3x^{2} + 3 =\]
\[= 8x^{3} - 3x^{2} + 3\]
\[2)\ f(x) = - x^{5} + 2x^{3} - 3x^{2} - 1\]
\[f^{'}(x) =\]
\[= - \left( x^{5} \right)^{'} + 2 \bullet \left( x^{3} \right)^{'} - 3 \bullet \left( x^{2} \right)^{'} - (1)^{'} =\]
\[= - 5x^{4} + 2 \bullet 3x^{2} - 3 \bullet 2x - 0 =\]
\[= - 5x^{4} + 6x^{2} - 6x\]
\[3)\ f(x) = 6\sqrt[3]{x} + \frac{1}{x^{2}}\]
\[f^{'}(x) = 6 \bullet \left( x^{\frac{1}{3}} \right)^{'} + \left( x^{- 2} \right)^{'} =\]
\[= 6 \bullet \frac{1}{3} \bullet x^{- \frac{2}{3}} + ( - 2) \bullet x^{- 3} =\]
\[= \frac{2}{\sqrt[3]{x^{2}}} - \frac{2}{x^{3}}\]
\[4)\ f(x) = \frac{2}{x^{3}} - 8\sqrt[4]{x}\]
\[f^{'}(x) = 2 \bullet \left( x^{- 3} \right)^{'} - 8 \bullet \left( x^{\frac{1}{4}} \right)^{'} =\]
\[= 2 \bullet ( - 3) \bullet x^{- 4} - 8 \bullet \frac{1}{4} \bullet x^{- \frac{3}{4}} =\]
\[= - \frac{6}{x^{4}} - \frac{2}{\sqrt[4]{x^{3}}}\]
\[5)\ f(x) = (2x + 3)^{8}\]
\[f^{'}(x) = {(2x + 3)^{8}}^{'} =\]
\[= 8 \bullet 2 \bullet (2x + 3)^{7} =\]
\[= 16(2x + 3)^{7}\]
\[6)\ f(x) = (4 - 3x)^{7}\]
\[f^{'}(x) = {(4 - 3x)^{7}}^{'} =\]
\[= 7 \bullet ( - 3) \bullet (4 - 3x)^{6} =\]
\[= - 21(4 - 3x)^{6}\]
\[7)\ f(x) = \sqrt[3]{3x - 2}\]
\[f^{'}(x) = (3x - 2)^{\frac{1}{3}} =\]
\[= \frac{1}{3} \bullet 3 \bullet (3x - 2)^{- \frac{2}{3}} =\]
\[= \frac{1}{\sqrt[3]{(3x - 2)^{2}}}\]
\[8)\ f(x) = \frac{1}{\sqrt{1 - 4x}}\]
\[f^{'}(x) = (1 - 4x)^{- \frac{1}{2}} =\]
\[= - \frac{1}{2} \bullet ( - 4) \bullet (1 - 4x)^{- \frac{3}{2}} =\]
\[= \frac{2}{(1 - 4x)\sqrt{1 - 4x}}.\]